Effects of removal of NA+ and Cl- on spontaneous electrical activity, slow wave, in the circular muscle of the guinea-pig gastric antrum

T. Tomita, Tadayoshi Hata

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

In the circular muscle of the guinea-pig gastric antrum, a decrease in the external Na+ to less than 20 mM produced depolarization of the membrane with transient prolongation of the slow wave. This was followed by a high rhythmic activity. The activity was inhibited by reapplication of Na+ before recovery. The depolarization in Na+-deficient solution was prevented and rhythmic activity continued at about 5/min for at least 6 min by simultaneous removal of K+, Ca2+, or Cl-. After exposure to a NA+- and Cl--deficient solution for a few minutes, reapplication of the Na+ in Cl--deficient solution inhibited generation of the slow wave until Cl- reapplication. Similar results were obtained when Na+ and Cl- were reapplied in the absence of K+ after exposure to a Na+-, K+-free, an Cl--deficient solution, although the inhibition was weaker than Na+ reapplication in a Cl--deficient solution. In the presence of furosemide or bumetanide, a strong inhibition of activity was produced by the reapplication of Na+ and Cl- after exposure to an Na+- and Cl--deficient solution. A hypothesis is presented that intracellular Ca2+ concentration ([Ca2+]i) is the most important factor determining the generation and frequency of the slow wave and that [Ca2+]i is regulated by the Na+ concentration gradient across the plasma membrane. The recovery of the Na+ concentration gradient by Na+ reapplication after removal of Na+ and Cl- is mainly controlled by a Na+-K+-Cl- co-transport.

Original languageEnglish
Pages (from-to)469-477
Number of pages9
JournalJapanese Journal of Physiology
Volume50
Issue number5
DOIs
Publication statusPublished - 01-12-2000

Fingerprint

Pyloric Antrum
Guinea Pigs
Muscles
Bumetanide
Furosemide
Cell Membrane
Membranes

All Science Journal Classification (ASJC) codes

  • Physiology

Cite this

@article{e6f127fe19f34942a92c363954b4f426,
title = "Effects of removal of NA+ and Cl- on spontaneous electrical activity, slow wave, in the circular muscle of the guinea-pig gastric antrum",
abstract = "In the circular muscle of the guinea-pig gastric antrum, a decrease in the external Na+ to less than 20 mM produced depolarization of the membrane with transient prolongation of the slow wave. This was followed by a high rhythmic activity. The activity was inhibited by reapplication of Na+ before recovery. The depolarization in Na+-deficient solution was prevented and rhythmic activity continued at about 5/min for at least 6 min by simultaneous removal of K+, Ca2+, or Cl-. After exposure to a NA+- and Cl--deficient solution for a few minutes, reapplication of the Na+ in Cl--deficient solution inhibited generation of the slow wave until Cl- reapplication. Similar results were obtained when Na+ and Cl- were reapplied in the absence of K+ after exposure to a Na+-, K+-free, an Cl--deficient solution, although the inhibition was weaker than Na+ reapplication in a Cl--deficient solution. In the presence of furosemide or bumetanide, a strong inhibition of activity was produced by the reapplication of Na+ and Cl- after exposure to an Na+- and Cl--deficient solution. A hypothesis is presented that intracellular Ca2+ concentration ([Ca2+]i) is the most important factor determining the generation and frequency of the slow wave and that [Ca2+]i is regulated by the Na+ concentration gradient across the plasma membrane. The recovery of the Na+ concentration gradient by Na+ reapplication after removal of Na+ and Cl- is mainly controlled by a Na+-K+-Cl- co-transport.",
author = "T. Tomita and Tadayoshi Hata",
year = "2000",
month = "12",
day = "1",
doi = "10.2170/jjphysiol.50.469",
language = "English",
volume = "50",
pages = "469--477",
journal = "Journal of Physiological Sciences",
issn = "1880-6546",
publisher = "Springer Japan",
number = "5",

}

TY - JOUR

T1 - Effects of removal of NA+ and Cl- on spontaneous electrical activity, slow wave, in the circular muscle of the guinea-pig gastric antrum

AU - Tomita, T.

AU - Hata, Tadayoshi

PY - 2000/12/1

Y1 - 2000/12/1

N2 - In the circular muscle of the guinea-pig gastric antrum, a decrease in the external Na+ to less than 20 mM produced depolarization of the membrane with transient prolongation of the slow wave. This was followed by a high rhythmic activity. The activity was inhibited by reapplication of Na+ before recovery. The depolarization in Na+-deficient solution was prevented and rhythmic activity continued at about 5/min for at least 6 min by simultaneous removal of K+, Ca2+, or Cl-. After exposure to a NA+- and Cl--deficient solution for a few minutes, reapplication of the Na+ in Cl--deficient solution inhibited generation of the slow wave until Cl- reapplication. Similar results were obtained when Na+ and Cl- were reapplied in the absence of K+ after exposure to a Na+-, K+-free, an Cl--deficient solution, although the inhibition was weaker than Na+ reapplication in a Cl--deficient solution. In the presence of furosemide or bumetanide, a strong inhibition of activity was produced by the reapplication of Na+ and Cl- after exposure to an Na+- and Cl--deficient solution. A hypothesis is presented that intracellular Ca2+ concentration ([Ca2+]i) is the most important factor determining the generation and frequency of the slow wave and that [Ca2+]i is regulated by the Na+ concentration gradient across the plasma membrane. The recovery of the Na+ concentration gradient by Na+ reapplication after removal of Na+ and Cl- is mainly controlled by a Na+-K+-Cl- co-transport.

AB - In the circular muscle of the guinea-pig gastric antrum, a decrease in the external Na+ to less than 20 mM produced depolarization of the membrane with transient prolongation of the slow wave. This was followed by a high rhythmic activity. The activity was inhibited by reapplication of Na+ before recovery. The depolarization in Na+-deficient solution was prevented and rhythmic activity continued at about 5/min for at least 6 min by simultaneous removal of K+, Ca2+, or Cl-. After exposure to a NA+- and Cl--deficient solution for a few minutes, reapplication of the Na+ in Cl--deficient solution inhibited generation of the slow wave until Cl- reapplication. Similar results were obtained when Na+ and Cl- were reapplied in the absence of K+ after exposure to a Na+-, K+-free, an Cl--deficient solution, although the inhibition was weaker than Na+ reapplication in a Cl--deficient solution. In the presence of furosemide or bumetanide, a strong inhibition of activity was produced by the reapplication of Na+ and Cl- after exposure to an Na+- and Cl--deficient solution. A hypothesis is presented that intracellular Ca2+ concentration ([Ca2+]i) is the most important factor determining the generation and frequency of the slow wave and that [Ca2+]i is regulated by the Na+ concentration gradient across the plasma membrane. The recovery of the Na+ concentration gradient by Na+ reapplication after removal of Na+ and Cl- is mainly controlled by a Na+-K+-Cl- co-transport.

UR - http://www.scopus.com/inward/record.url?scp=0034534850&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034534850&partnerID=8YFLogxK

U2 - 10.2170/jjphysiol.50.469

DO - 10.2170/jjphysiol.50.469

M3 - Article

VL - 50

SP - 469

EP - 477

JO - Journal of Physiological Sciences

JF - Journal of Physiological Sciences

SN - 1880-6546

IS - 5

ER -