TY - JOUR
T1 - Eicosapentaenoic acid is anti-inflammatory in preventing choroidal neovascularization in mice
AU - Koto, Takashi
AU - Nagai, Norihiro
AU - Mochimaru, Hiroshi
AU - Kurihara, Toshihide
AU - Izumi-Nagai, Kanako
AU - Satofuka, Shingo
AU - Shinoda, Hajime
AU - Noda, Kousuke
AU - Ozawa, Yoko
AU - Inoue, Makoto
AU - Tsubota, Kazuo
AU - Oike, Yuichi
AU - Ishida, Susumu
PY - 2007/9
Y1 - 2007/9
N2 - PURPOSE. To investigate the role of eicosapentaenoic acid (EPA), the major ω-3 polyunsaturated fatty acid (PUFA), in the development of choroidal neovascularization (CNTV), together with underlying molecular mechanisms. METHODS. Six-week-old C57BL/6 mice were fed with laboratory chow with 5% EPA or the ω-6 PUFA linoleic acid (LA) for 4 weeks. Laser photocoagulation was performed to induce CNV, and the volume of CNV tissue was evaluated by volumetric measurements. The expression and production of intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1, vascular endothelial growth factor (VEGF) and interleukin (IL)-6 in the retinal pigment epithelium (RPE)-choroid in vivo, and stimulated b-End3 endothelial cells and RAW264.7 macrophages in vitro were evaluated by RT-PCR and ELISA. Fatty acid composition in the serum and the RPE-choroid was analyzed by gas chromatography and high-performance liquid chromatography, respectively. Serum levels of C-reactive protein (CRP), IL-6, VEGF, MCP1, and soluble ICAM-1 were examined by ELISA. RESULTS. The CNV volume in EPA-fed animals was significantly suppressed compared with that in control mice, whereas the LA-rich diet did not affect CNV. The mRNA expression and protein levels of ICAM-1, MCP-1, VEGF, and IL-6 after CNV induction were significantly reduced in EPA-supplemented mice. In vitro, EPA application led to significant inhibition of mRNA and protein levels of ICAM-1 and MCP-1 in endothelial cells and VEGF and IL-6 in macrophages. EPA-fed mice exhibited significantly higher levels of EPA and lower levels of the ω-6 PUFA arachidonic acid in the serum and the RPE-choroid than control animals. EPA supplementation also led to significant reduction of serum levels of IL-6 and CRP after CNV induction. CONCLUSIONS. The present study demonstrates for the first time that an EPA-rich diet results in significant suppression of CNV and CNV-related inflammatory molecules in vivo and in vitro. These results suggest that frequent consumption of ω-3 PUFAs may prevent CNV and lower the risk of blindness due to age-related macular degeneration.
AB - PURPOSE. To investigate the role of eicosapentaenoic acid (EPA), the major ω-3 polyunsaturated fatty acid (PUFA), in the development of choroidal neovascularization (CNTV), together with underlying molecular mechanisms. METHODS. Six-week-old C57BL/6 mice were fed with laboratory chow with 5% EPA or the ω-6 PUFA linoleic acid (LA) for 4 weeks. Laser photocoagulation was performed to induce CNV, and the volume of CNV tissue was evaluated by volumetric measurements. The expression and production of intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1, vascular endothelial growth factor (VEGF) and interleukin (IL)-6 in the retinal pigment epithelium (RPE)-choroid in vivo, and stimulated b-End3 endothelial cells and RAW264.7 macrophages in vitro were evaluated by RT-PCR and ELISA. Fatty acid composition in the serum and the RPE-choroid was analyzed by gas chromatography and high-performance liquid chromatography, respectively. Serum levels of C-reactive protein (CRP), IL-6, VEGF, MCP1, and soluble ICAM-1 were examined by ELISA. RESULTS. The CNV volume in EPA-fed animals was significantly suppressed compared with that in control mice, whereas the LA-rich diet did not affect CNV. The mRNA expression and protein levels of ICAM-1, MCP-1, VEGF, and IL-6 after CNV induction were significantly reduced in EPA-supplemented mice. In vitro, EPA application led to significant inhibition of mRNA and protein levels of ICAM-1 and MCP-1 in endothelial cells and VEGF and IL-6 in macrophages. EPA-fed mice exhibited significantly higher levels of EPA and lower levels of the ω-6 PUFA arachidonic acid in the serum and the RPE-choroid than control animals. EPA supplementation also led to significant reduction of serum levels of IL-6 and CRP after CNV induction. CONCLUSIONS. The present study demonstrates for the first time that an EPA-rich diet results in significant suppression of CNV and CNV-related inflammatory molecules in vivo and in vitro. These results suggest that frequent consumption of ω-3 PUFAs may prevent CNV and lower the risk of blindness due to age-related macular degeneration.
UR - http://www.scopus.com/inward/record.url?scp=35148831599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35148831599&partnerID=8YFLogxK
U2 - 10.1167/iovs.06-1148
DO - 10.1167/iovs.06-1148
M3 - Article
C2 - 17724224
AN - SCOPUS:35148831599
SN - 0146-0404
VL - 48
SP - 4328
EP - 4334
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 9
ER -