Enhanced Biodegradation of Silk Fibroin Hydrogel for Preventing Postoperative Adhesion

Yusuke Kambe, Yusuke Kawano, Makoto Sasaki, Maito Koga, Nobuyuki Fujita, Tsunenori Kameda

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

An absorbable adhesion barrier is a medical device that prevents postoperative adhesion and matches its biodegradation time with the regeneration period of its target tissues, which is important for antiadhesion effects. Physical hydrogels of Bombyx mori silk fibroin (SF) proteins are degradable in vivo. However, their biodegradation time is too long to exert antiadhesion effects. To shorten the biodegradation time of the SF hydrogels, we decreased the molecular weight (MW) of the SF proteins by alkaline treatment and prepared low-MW (LMW) SF hydrogels. The hydrogels contained less β-sheet crystalline and more amorphous structures than conventional, high-MW (HMW) SF hydrogels. Because of the potential loosened SF molecular structures in the hydrogel networks, the LMW SF hydrogels showed enhanced biodegradation (i.e., shorter in vitro enzymatic biodegradation time and faster in vivo biodegradation rate) as well as a lower affinity for plasma proteins and fibroblasts, which are involved in postoperative adhesion formation. An antiadhesion test using a rat abdominal adhesion model demonstrated that the LMW SF hydrogel applied to the abraded cecum was almost completely degraded within two weeks postimplantation, with a significantly lower adhesion severity score than that in the untreated model rat group. Conversely, the HMW SF hydrogel remained between the cecum and abdominal wall, with the same adhesion severity as that of the untreated model rat group. Therefore, we concluded that the antiadhesion effects of SF hydrogels were induced by enhanced biodegradation. The results of this study indicate the potential of LMW SF hydrogels as absorbable adhesion barriers.

Original languageEnglish
Pages (from-to)7441-7450
Number of pages10
JournalACS Biomaterials Science and Engineering
Volume10
Issue number12
DOIs
Publication statusPublished - 09-12-2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Enhanced Biodegradation of Silk Fibroin Hydrogel for Preventing Postoperative Adhesion'. Together they form a unique fingerprint.

Cite this