TY - JOUR
T1 - Enhancement of mouse sperm motility by trophinin-binding peptide
AU - Park, Seong K.
AU - Yoon, Jiwon
AU - Wang, Ling
AU - Shibata, Toshiaki K.
AU - Motamedchaboki, Khatereh
AU - Shim, Kyung J.
AU - Chang, Mun S.
AU - Lee, Seung H.
AU - Tamura, Naoaki
AU - Hatakeyama, Shingo
AU - Nadano, Daita
AU - Sugihara, Kazuhiro
AU - Fukuda, Michiko N.
N1 - Funding Information:
This study was supported by a Department of Defense, Prostate Cancer Research Program IDEA grant (to MNF) W81XWH-04-1-0917, and Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010– 0013296) (to MSC), and the 11th Kanzawa Medical Research Foundation Award (to KS). We greatly thank Drs. Michael W. Berns and Linda Shi, Department of Bioengineering at the University of California, San Diego, for their generous offer to assist us with the CASA analysis. We thank Dr. Elise Lamar for editing the manuscript.
PY - 2012/11/29
Y1 - 2012/11/29
N2 - Background: Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase) in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine) peptide enhanced motility of human sperm.Methods: Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine) peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA).Results: Anti-trophinin antibody stained the principal (central) piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm.Conclusions: Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.
AB - Background: Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase) in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine) peptide enhanced motility of human sperm.Methods: Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine) peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA).Results: Anti-trophinin antibody stained the principal (central) piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm.Conclusions: Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.
UR - http://www.scopus.com/inward/record.url?scp=84870062163&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84870062163&partnerID=8YFLogxK
U2 - 10.1186/1477-7827-10-101
DO - 10.1186/1477-7827-10-101
M3 - Article
C2 - 23194061
AN - SCOPUS:84870062163
SN - 1477-7827
VL - 10
JO - Reproductive Biology and Endocrinology
JF - Reproductive Biology and Endocrinology
M1 - 101
ER -