Evaluation of Kidney Histological Images Using Unsupervised Deep Learning

Noriaki Sato, Eiichiro Uchino, Ryosuke Kojima, Minoru Sakuragi, Shusuke Hiragi, Sachiko Minamiguchi, Hironori Haga, Hideki Yokoi, Motoko Yanagita, Yasushi Okuno

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Introduction: Evaluating histopathology via machine learning has gained research and clinical interest, and the performance of supervised learning tasks has been described in various areas of medicine. Unsupervised learning of histological images has the advantage of reproducibility for labeling; however, the relationship between unsupervised evaluation and clinical information remains unclear in nephrology. Methods: We propose an unsupervised approach combining convolutional neural networks (CNNs) and a visualization algorithm to cluster the histological images and calculate the score for patients. We applied the approach to the entire images or patched images of the glomerulus of kidney biopsy samples stained with hematoxylin and eosin obtained from 68 patients with immunoglobulin A nephropathy. We assessed the relationship between the obtained scores and clinical variables of urinary occult blood, urinary protein, serum creatinine (SCr), systolic blood pressure, and age. Results: The glomeruli of the patients were classified into 12 distinct classes and 10 patches. The output of the fine-tuned CNN, which we defined as the histological scores, had significant relationships with assessed clinical variables. In addition, the clustering and visualization results suggested that the defined clusters captured important findings when evaluating renal histopathology. For the score of the patch-based cluster containing crescentic glomeruli, SCr (coefficient = 0.09, P = 0.019) had a significant relationship. Conclusion: The proposed approach could successfully extract features that were related to the clinical variables from the kidney biopsy images along with the visualization for interpretability. The approach could aid in the quantified evaluation of renal histopathology.

Original languageEnglish
Pages (from-to)2445-2454
Number of pages10
JournalKidney International Reports
Volume6
Issue number9
DOIs
Publication statusPublished - 09-2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Nephrology

Fingerprint

Dive into the research topics of 'Evaluation of Kidney Histological Images Using Unsupervised Deep Learning'. Together they form a unique fingerprint.

Cite this