TY - JOUR
T1 - Evaluation of Kidney Histological Images Using Unsupervised Deep Learning
AU - Sato, Noriaki
AU - Uchino, Eiichiro
AU - Kojima, Ryosuke
AU - Sakuragi, Minoru
AU - Hiragi, Shusuke
AU - Minamiguchi, Sachiko
AU - Haga, Hironori
AU - Yokoi, Hideki
AU - Yanagita, Motoko
AU - Okuno, Yasushi
N1 - Publisher Copyright:
© 2021 International Society of Nephrology
PY - 2021/9
Y1 - 2021/9
N2 - Introduction: Evaluating histopathology via machine learning has gained research and clinical interest, and the performance of supervised learning tasks has been described in various areas of medicine. Unsupervised learning of histological images has the advantage of reproducibility for labeling; however, the relationship between unsupervised evaluation and clinical information remains unclear in nephrology. Methods: We propose an unsupervised approach combining convolutional neural networks (CNNs) and a visualization algorithm to cluster the histological images and calculate the score for patients. We applied the approach to the entire images or patched images of the glomerulus of kidney biopsy samples stained with hematoxylin and eosin obtained from 68 patients with immunoglobulin A nephropathy. We assessed the relationship between the obtained scores and clinical variables of urinary occult blood, urinary protein, serum creatinine (SCr), systolic blood pressure, and age. Results: The glomeruli of the patients were classified into 12 distinct classes and 10 patches. The output of the fine-tuned CNN, which we defined as the histological scores, had significant relationships with assessed clinical variables. In addition, the clustering and visualization results suggested that the defined clusters captured important findings when evaluating renal histopathology. For the score of the patch-based cluster containing crescentic glomeruli, SCr (coefficient = 0.09, P = 0.019) had a significant relationship. Conclusion: The proposed approach could successfully extract features that were related to the clinical variables from the kidney biopsy images along with the visualization for interpretability. The approach could aid in the quantified evaluation of renal histopathology.
AB - Introduction: Evaluating histopathology via machine learning has gained research and clinical interest, and the performance of supervised learning tasks has been described in various areas of medicine. Unsupervised learning of histological images has the advantage of reproducibility for labeling; however, the relationship between unsupervised evaluation and clinical information remains unclear in nephrology. Methods: We propose an unsupervised approach combining convolutional neural networks (CNNs) and a visualization algorithm to cluster the histological images and calculate the score for patients. We applied the approach to the entire images or patched images of the glomerulus of kidney biopsy samples stained with hematoxylin and eosin obtained from 68 patients with immunoglobulin A nephropathy. We assessed the relationship between the obtained scores and clinical variables of urinary occult blood, urinary protein, serum creatinine (SCr), systolic blood pressure, and age. Results: The glomeruli of the patients were classified into 12 distinct classes and 10 patches. The output of the fine-tuned CNN, which we defined as the histological scores, had significant relationships with assessed clinical variables. In addition, the clustering and visualization results suggested that the defined clusters captured important findings when evaluating renal histopathology. For the score of the patch-based cluster containing crescentic glomeruli, SCr (coefficient = 0.09, P = 0.019) had a significant relationship. Conclusion: The proposed approach could successfully extract features that were related to the clinical variables from the kidney biopsy images along with the visualization for interpretability. The approach could aid in the quantified evaluation of renal histopathology.
UR - http://www.scopus.com/inward/record.url?scp=85111268565&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111268565&partnerID=8YFLogxK
U2 - 10.1016/j.ekir.2021.06.008
DO - 10.1016/j.ekir.2021.06.008
M3 - Article
AN - SCOPUS:85111268565
SN - 2468-0249
VL - 6
SP - 2445
EP - 2454
JO - Kidney International Reports
JF - Kidney International Reports
IS - 9
ER -