Exposure to Far Infrared Ray Protects Methamphetamine-Induced Behavioral Sensitization in Glutathione Peroxidase-1 Knockout Mice via Attenuating Mitochondrial Burdens and Dopamine D1 Receptor Activation

Huynh Nhu Mai, Naveen Sharma, Eun Joo Shin, Bao Trong Nguyen, Ji Hoon Jeong, Choon Gon Jang, Eun Hee Cho, Seung Yeol Nah, Nam Hun Kim, Toshitaka Nabeshima, Hyoung Chun Kim

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Evidence indicates that stress conditions might lead to drug dependence. Recently, we have demonstrated that exposure to far infrared ray (FIR) attenuates acute restraint stress via induction of glutathione peroxidase-1 (GPx-1) gene. We investigated whether FIR affects methamphetamine (MA)-induced behavioral sensitization and whether FIR-mediated pharmacological activity requires interaction between dopamine receptor and GPx-1 gene. We observed that MA treatment significantly increased GPx-1 expression in the striatum of wild-type (WT) mice. Interestingly, exposure to FIR potentiated MA-induced increase in GPx-1 expression. This phenomenon was also observed in animals receiving MA with dopamine D1 receptor antagonist SCH23390. However, dopamine D2 receptor antagonist sulpiride did not affect MA-induced GPx-1 expression. FIR exposure or SCH23390, but not sulpiride, significantly attenuated MA-induced behavioral sensitization. Exposure to FIR significantly attenuated MA-induced dopamine D1 receptor expression, c-Fos induction and oxidative burdens. FIR-mediated antioxidant effects were also more pronounced in mitochondrial- than cytosolic-fraction. In addition, FIR significantly attenuated against MA-induced changes in mitochondrial superoxide dismutase and mitochondrial GPx activities, mitochondrial transmembrane potential, intramitochondrial Ca2+ level, mitochondrial complex-I activity, and mitochondrial oxidative burdens. The attenuation by FIR was paralleled that by SCH23390. Effects of FIR or SCH23390 were more sensitive to GPx-1 KO than WT mice, while SCH23390 treatment did not exhibit any additive effects on the protective activity mediated by FIR, indicating that dopamine D1 receptor constitutes a molecular target of FIR. Our result suggests that exposure to FIR ameliorates MA-induced behavioral sensitization via possible interaction between dopamine D1 receptor and GPx-1 gene.

Original languageEnglish
Pages (from-to)1118-1135
Number of pages18
JournalNeurochemical Research
Volume43
Issue number5
DOIs
Publication statusPublished - 01-05-2018

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this