TY - JOUR
T1 - Fibronectin is essential for survival but is dispensable for proliferation of hepatocytes in acute liver injury in mice
AU - Moriya, Kei
AU - Sakai, Keiko
AU - Yan, Michel H.
AU - Sakai, Takao
PY - 2012/7
Y1 - 2012/7
N2 - Acute liver injury causes massive hepatocyte apoptosis and/or fatal liver damage. Fibronectin, an extracellular matrix glycoprotein, is prominently expressed during adult tissue repair. However, the extent of fibronectin dependence on hepatocyte response to acute liver damage remains to be defined. Because identification of hepatic survival factors is critical for successful therapeutic intervention in liver failure, this relationship has been investigated using a fibronectin-deficient mouse model of acute liver injury. Here, we show that lack of fibronectin induces significantly increased hepatocyte apoptosis, which is accompanied by significant down-regulation of the antiapoptotic protein, B-cell lymphoma-extra large (Bcl-xL). Furthermore, fibronectin deficiency leads to a significantly elevated production of hepatocyte growth factor in hepatic stellate cells postinjury, which, in turn, results in an earlier onset and acceleration of hepatocyte regeneration. Primary hepatocytes on fibronectin are protected from reactive oxygen species-induced cellular damage, retaining the expression of Bcl-xL, whereas those on type I collagen are not. This retained expression of Bcl-xL is inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Conclusion: We provide evidence that fibronectin-mediated matrix survival signals for hepatocytes are transduced through the PI3K/Bcl-xL-signaling axis in response to injury. This work defines fibronectin as a novel antiapoptotic factor for hepatocytes after acute liver injury, but demonstrates that fibronectin is not essential for subsequent hepatocyte proliferation.
AB - Acute liver injury causes massive hepatocyte apoptosis and/or fatal liver damage. Fibronectin, an extracellular matrix glycoprotein, is prominently expressed during adult tissue repair. However, the extent of fibronectin dependence on hepatocyte response to acute liver damage remains to be defined. Because identification of hepatic survival factors is critical for successful therapeutic intervention in liver failure, this relationship has been investigated using a fibronectin-deficient mouse model of acute liver injury. Here, we show that lack of fibronectin induces significantly increased hepatocyte apoptosis, which is accompanied by significant down-regulation of the antiapoptotic protein, B-cell lymphoma-extra large (Bcl-xL). Furthermore, fibronectin deficiency leads to a significantly elevated production of hepatocyte growth factor in hepatic stellate cells postinjury, which, in turn, results in an earlier onset and acceleration of hepatocyte regeneration. Primary hepatocytes on fibronectin are protected from reactive oxygen species-induced cellular damage, retaining the expression of Bcl-xL, whereas those on type I collagen are not. This retained expression of Bcl-xL is inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Conclusion: We provide evidence that fibronectin-mediated matrix survival signals for hepatocytes are transduced through the PI3K/Bcl-xL-signaling axis in response to injury. This work defines fibronectin as a novel antiapoptotic factor for hepatocytes after acute liver injury, but demonstrates that fibronectin is not essential for subsequent hepatocyte proliferation.
UR - http://www.scopus.com/inward/record.url?scp=84863521937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863521937&partnerID=8YFLogxK
U2 - 10.1002/hep.25624
DO - 10.1002/hep.25624
M3 - Article
C2 - 22318920
AN - SCOPUS:84863521937
SN - 0270-9139
VL - 56
SP - 311
EP - 321
JO - Hepatology
JF - Hepatology
IS - 1
ER -