TY - JOUR
T1 - First-in-human in vivo imaging and quantification of monoacylglycerol lipase in the brain
T2 - a PET study with 18F-T-401
AU - Takahata, Keisuke
AU - Seki, Chie
AU - Kimura, Yasuyuki
AU - Kubota, Manabu
AU - Ichise, Masanori
AU - Sano, Yasunori
AU - Yamamoto, Yasuharu
AU - Tagai, Kenji
AU - Shimada, Hitoshi
AU - Kitamura, Soichiro
AU - Matsuoka, Kiwamu
AU - Endo, Hironobu
AU - Shinotoh, Hitoshi
AU - Kawamura, Kazunori
AU - Zhang, Ming Rong
AU - Takado, Yuhei
AU - Higuchi, Makoto
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/7
Y1 - 2022/7
N2 - Purpose: Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401. Methods: Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test–retest reproducibility of 18F-T-401-PET were also evaluated. Results: 18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test–retest reliability was also excellent with the use of MA1. Conclusions: Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test–retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.
AB - Purpose: Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401. Methods: Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test–retest reproducibility of 18F-T-401-PET were also evaluated. Results: 18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test–retest reliability was also excellent with the use of MA1. Conclusions: Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test–retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.
UR - http://www.scopus.com/inward/record.url?scp=85122802754&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122802754&partnerID=8YFLogxK
U2 - 10.1007/s00259-021-05671-y
DO - 10.1007/s00259-021-05671-y
M3 - Article
C2 - 35022846
AN - SCOPUS:85122802754
SN - 1619-7070
VL - 49
SP - 3150
EP - 3161
JO - European Journal of Nuclear Medicine and Molecular Imaging
JF - European Journal of Nuclear Medicine and Molecular Imaging
IS - 9
ER -