Flexible search for single-axon morphology during neuronal spontaneous polarization

Honda Naoki, Shinichi Nakamuta, Kozo Kaibuchi, Shin Ishii

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


Polarization, a disruption of symmetry in cellular morphology, occurs spontaneously, even in symmetrical extracellular conditions. This process is regulated by intracellular chemical reactions and the active transport of proteins and it is accompanied by cellular morphological changes. To elucidate the general principles underlying polarization, we focused on developing neurons. Neuronal polarity is stably established; a neuron initially has several neurites of similar length, but only one elongates and is selected to develop into an axon. Polarization is flexibly controlled; when multiple neurites are selected, the selection is eventually reduced to yield a single axon. What is the system by which morphological information is decoded differently based on the presence of a single or multiple axons? How are stability and flexibility achieved? To answer these questions, we constructed a biophysical model with the active transport of proteins that regulate neurite growth. Our mathematical analysis and computer simulation revealed that, as neurites elongate, transported factors accumulate in the growth cone but are degraded during retrograde diffusion to the soma. Such a system effectively works as local activation-global inhibition mechanism, resulting in both stability and flexibility. Our model shows good accordance with a number of experimental observations.

Original languageEnglish
Article numbere19034
JournalPloS one
Issue number4
Publication statusPublished - 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General


Dive into the research topics of 'Flexible search for single-axon morphology during neuronal spontaneous polarization'. Together they form a unique fingerprint.

Cite this