TY - JOUR
T1 - Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania
AU - Adams-Haduch, Jennifer M.
AU - Paterson, David L.
AU - Sidjabat, Hanna E.
AU - Pasculle, Anthony W.
AU - Potoski, Brian A.
AU - Muto, Carlene A.
AU - Harrison, Lee H.
AU - Doi, Yohei
PY - 2008/11
Y1 - 2008/11
N2 - A total of 49 unique clinical isolates of multidrug-resistant (MDR) Acinetobacter baumannii identified at a tertiary medical center in Pittsburgh, Pennsylvania, between August 2006 and September 2007 were studied for the genetic basis of their MDR phenotype. Approximately half of all A. baumannii clinical isolates identified during this period qualified as MDR, defined by nonsusceptibility to three or more of the antimicrobials routinely tested in the clinical microbiology laboratory. Among the MDR isolates, 18.4% were resistant to imipenem. The frequencies of resistance to amikacin and ciprofloxacin were high at 36.7% and 95.9%, respectively. None of the isolates was resistant to colistin or tigecycline. The presence of the carbapenemase gene bla OXA-23 and the 16S rRNA methylase gene armA predicted high-level resistance to imipenem and amikacin, respectively. blaOXA-23 was preceded by insertion sequence ISAba1, which likely provided a potent promoter activity for the expression of the carbapenemase gene. The structure of the transposon defined by ISAba1 differed from those reported in Europe, suggesting that ISAba1-mediated acquisition of blaOXA-23 may occur as an independent event. Typical substitutions in the quinolone resistance-determining regions of the gyrA and parC genes were observed in the ciprofloxacin-resistant isolates. Plasmid-mediated quinolone resistance genes, including the qnr genes, were not identified. Fifty-nine percent of the MDR isolates belonged to a single clonal group over the course of the study period, as demonstrated by pulsed-field gel electrophoresis.
AB - A total of 49 unique clinical isolates of multidrug-resistant (MDR) Acinetobacter baumannii identified at a tertiary medical center in Pittsburgh, Pennsylvania, between August 2006 and September 2007 were studied for the genetic basis of their MDR phenotype. Approximately half of all A. baumannii clinical isolates identified during this period qualified as MDR, defined by nonsusceptibility to three or more of the antimicrobials routinely tested in the clinical microbiology laboratory. Among the MDR isolates, 18.4% were resistant to imipenem. The frequencies of resistance to amikacin and ciprofloxacin were high at 36.7% and 95.9%, respectively. None of the isolates was resistant to colistin or tigecycline. The presence of the carbapenemase gene bla OXA-23 and the 16S rRNA methylase gene armA predicted high-level resistance to imipenem and amikacin, respectively. blaOXA-23 was preceded by insertion sequence ISAba1, which likely provided a potent promoter activity for the expression of the carbapenemase gene. The structure of the transposon defined by ISAba1 differed from those reported in Europe, suggesting that ISAba1-mediated acquisition of blaOXA-23 may occur as an independent event. Typical substitutions in the quinolone resistance-determining regions of the gyrA and parC genes were observed in the ciprofloxacin-resistant isolates. Plasmid-mediated quinolone resistance genes, including the qnr genes, were not identified. Fifty-nine percent of the MDR isolates belonged to a single clonal group over the course of the study period, as demonstrated by pulsed-field gel electrophoresis.
UR - http://www.scopus.com/inward/record.url?scp=55849106287&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55849106287&partnerID=8YFLogxK
U2 - 10.1128/AAC.00570-08
DO - 10.1128/AAC.00570-08
M3 - Article
C2 - 18725452
AN - SCOPUS:55849106287
SN - 0066-4804
VL - 52
SP - 3837
EP - 3843
JO - Antimicrobial agents and chemotherapy
JF - Antimicrobial agents and chemotherapy
IS - 11
ER -