Abstract
The arginine vasopressin (AVP) gene was sequenced in a pedigree with familial central diabetes insipidus (DI). When polymerase chain reaction-amplified DNAs from affected subjects were subjected to polyacrylamide gel electrophoresis, fragments including exon 2 displayed two additional, slower migrating bands. These extra bands represented DNA heteroduplexes, indicating that there was a deletion or insertion mutation in exon 2. As the region with such a mutation was identified by direct sequence analysis, polymerase chain reaction-amplified fragments including the region were subcloned and sequenced. A 3-basepair deletion (AGG) out of two consecutive AGG sequences (nucleotides 1824-1829) was identified in one of two alleles. The cosegregation of the mutation with the DI phenotype in the family was confirmed by restriction enzyme analyses. This mutation should yield an abnormal AVP precursor lacking Glu47 in its neurophysin-II (NP) moiety. Since Glu47 is essential for NP molecules to form a salt bridge with AVP, it is very likely that the function of NP as a carrier protein for AVP would be impaired. We suggest that AVP would undergo accelerated proteolytic degradation, and this mechanism would be involved in the pathogenesis of DI in this pedigree.
Original language | English |
---|---|
Pages (from-to) | 600-604 |
Number of pages | 5 |
Journal | Journal of Clinical Endocrinology and Metabolism |
Volume | 77 |
Issue number | 3 |
Publication status | Published - 09-1993 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Endocrinology, Diabetes and Metabolism
- Biochemistry
- Endocrinology
- Clinical Biochemistry
- Biochemistry, medical