TY - JOUR
T1 - Glutamate is an essential mediator in glutamine-amplified insulin secretion
AU - Han, Guirong
AU - Takahashi, Harumi
AU - Murao, Naoya
AU - Gheni, Ghupurjan
AU - Yokoi, Norihide
AU - Hamamoto, Yoshiyuki
AU - Asahara, Shun ichiro
AU - Seino, Yutaka
AU - Kido, Yoshiaki
AU - Seino, Susumu
N1 - Publisher Copyright:
© 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd
PY - 2021/6
Y1 - 2021/6
N2 - Aims/Introduction: Glutamine is the most abundant amino acid in the circulation. In this study, we investigated cell signaling in the amplification of insulin secretion by glutamine. Materials and Methods: Clonal pancreatic β-cells MIN6-K8, wild-type B6 mouse islets, glutamate dehydrogenase (GDH) knockout clonal β-cells (Glud1KOβCL), and glutamate-oxaloacetate transaminase 1 (GOT1) knockout clonal β-cells (Got1KOβCL) were studied. Insulin secretion from these cells and islets was examined under various conditions, and intracellular glutamine metabolism was assessed by metabolic flux analysis. Intracellular Ca2+ concentration ([Ca2+]i) was also measured. Results: Glutamine dose-dependently amplified insulin secretion in the presence of high glucose in both MIN6-K8 cells and Glud1KOβCL. Inhibition of glutaminases, the enzymes that convert glutamine to glutamate, dramatically reduced the glutamine-amplifying effect on insulin secretion. A substantial amount of glutamate was produced from glutamine through direct conversion by glutaminases. Glutamine also increased [Ca2+]i at high glucose, which was abolished by inhibition of glutaminases. Glutamic acid dimethylester (dm-Glu), a membrane permeable glutamate precursor that is converted to glutamate in cells, increased [Ca2+]i as well as induced insulin secretion at high glucose. These effects of glutamine and dm-Glu were dependent on calcium influx. Glutamine also induced insulin secretion in clonal β-cells MIN6-m14, which otherwise exhibit no insulin secretory response to glucose. Conclusions: Glutamate converted from glutamine is an essential mediator that enhances calcium signaling in the glutamine-amplifying effect on insulin secretion. Our data also suggest that glutamine exerts a permissive effect on glucose-induced insulin secretion.
AB - Aims/Introduction: Glutamine is the most abundant amino acid in the circulation. In this study, we investigated cell signaling in the amplification of insulin secretion by glutamine. Materials and Methods: Clonal pancreatic β-cells MIN6-K8, wild-type B6 mouse islets, glutamate dehydrogenase (GDH) knockout clonal β-cells (Glud1KOβCL), and glutamate-oxaloacetate transaminase 1 (GOT1) knockout clonal β-cells (Got1KOβCL) were studied. Insulin secretion from these cells and islets was examined under various conditions, and intracellular glutamine metabolism was assessed by metabolic flux analysis. Intracellular Ca2+ concentration ([Ca2+]i) was also measured. Results: Glutamine dose-dependently amplified insulin secretion in the presence of high glucose in both MIN6-K8 cells and Glud1KOβCL. Inhibition of glutaminases, the enzymes that convert glutamine to glutamate, dramatically reduced the glutamine-amplifying effect on insulin secretion. A substantial amount of glutamate was produced from glutamine through direct conversion by glutaminases. Glutamine also increased [Ca2+]i at high glucose, which was abolished by inhibition of glutaminases. Glutamic acid dimethylester (dm-Glu), a membrane permeable glutamate precursor that is converted to glutamate in cells, increased [Ca2+]i as well as induced insulin secretion at high glucose. These effects of glutamine and dm-Glu were dependent on calcium influx. Glutamine also induced insulin secretion in clonal β-cells MIN6-m14, which otherwise exhibit no insulin secretory response to glucose. Conclusions: Glutamate converted from glutamine is an essential mediator that enhances calcium signaling in the glutamine-amplifying effect on insulin secretion. Our data also suggest that glutamine exerts a permissive effect on glucose-induced insulin secretion.
UR - http://www.scopus.com/inward/record.url?scp=85100870537&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100870537&partnerID=8YFLogxK
U2 - 10.1111/jdi.13497
DO - 10.1111/jdi.13497
M3 - Article
C2 - 33417747
AN - SCOPUS:85100870537
SN - 2040-1116
VL - 12
SP - 920
EP - 930
JO - Journal of Diabetes Investigation
JF - Journal of Diabetes Investigation
IS - 6
ER -