Glyoxalase pathway is required for normal liver-stage proliferation of Plasmodium berghei

Akira Soga, Takahiro Shirozu, Shinya Fukumoto

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


The glyoxalase system is a ubiquitous detoxification pathway of methylglyoxal, a cytotoxic byproduct of glycolysis. Actively proliferating cells, such as cancer cells, depend on their energy metabolism for glycolysis. Therefore, the glyoxalase system has been evaluated as a target of anticancer drugs. The malaria sporozoite, which is the infective stage of the malaria parasite, actively proliferates and produces thousands of merozoites within 2–3 days in hepatocytes. This is the first step of infection in mammalian hosts. The glyoxalase system appears to play an important role in this active proliferation stage of the malaria parasite in hepatocytes. In this study, we aimed to dissect the role of the glyoxalase system in malaria parasite proliferation in hepatocytes to examine its potential as a target of malaria prevention using a reverse genetics approach. The malaria parasite possesses a glyoxalase system, comprised of glyoxalases and GloI-like protein, in the cytosol and apicoplast. We generated cytosolic glyoxalase II (cgloII) knockout, apicoplast targeted glyoxalase gloII (tgloII) knockout, and cgloII and tgloII double-knockout parasites and performed their phenotypic analysis. We did not observe any defects in the cgloII or tgloII knockout parasites. In contrast, we observed approximately 90% inhibition of the liver-stage proliferation of cgloII and tgloII double-knockout parasites in vivo. These findings suggest that although the glyoxalase system is dispensable, it plays an important role in parasite proliferation in hepatocytes. Additionally, the results indicate a complementary relationship between the cytosolic and apicoplast glyoxalase pathways. We expect that the parasite utilizes a system similar to that observed in cancer cells to enable its rapid proliferation in hepatocytes; this process could be targeted in the development of novel strategies to prevent malaria.

Original languageEnglish
Pages (from-to)61-66
Number of pages6
JournalBiochemical and Biophysical Research Communications
Publication statusPublished - 16-04-2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Glyoxalase pathway is required for normal liver-stage proliferation of Plasmodium berghei'. Together they form a unique fingerprint.

Cite this