Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

Miki Shimbo, Takashi Kudo, Michito Hamada, Hyojung Jeon, Yuki Imamura, Keigo Asano, Risa Okada, Yuki Tsunakawa, Seiya Mizuno, Ken Ichi Yagami, Chihiro Ishikawa, Haiyan Li, Takashi Shiga, Junji Ishida, Juri Hamada, Kazuya Murata, Tomohiro Ishimaru, Misuzu Hashimoto, Akiyoshi Fukamizu, Mutsumi YamaneMasahito Ikawa, Hironobu Morita, Masahiro Shinohara, Hiroshi Asahara, Taishin Akiyama, Nobuko Akiyama, Hiroki Sasanuma, Nobuaki Yoshida, Rui Zhou, Ying Ying Wang, Taito Ito, Yuko Kokubu, Taka Aki K. Noguchi, Hisako Ishimine, Akira Kurisaki, Dai Shiba, Hiroyasu Mizuno, Masaki Shirakawa, Naoki Ito, Shin’Ichi Takeda, Satoru Takahashi

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.

Original languageEnglish
Pages (from-to)175-187
Number of pages13
JournalExperimental animals
Volume65
Issue number2
DOIs
Publication statusPublished - 2016

All Science Journal Classification (ASJC) codes

  • Animal Science and Zoology
  • Biochemistry, Genetics and Molecular Biology(all)
  • veterinary(all)

Fingerprint Dive into the research topics of 'Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies'. Together they form a unique fingerprint.

Cite this