Gut commensals suppress interleukin-2 production through microRNA-200/BCL11B and microRNA-200/ETS-1 axes in lamina propria leukocytes of murine large intestine

Fumina Ohsaka, Yugo Karatsu, Yoshihiro Kadota, Takumi Tochio, Naoki Takemura, Kei Sonoyama

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

The role of microRNAs (miRNAs) in how microbiota influence the host intestinal immune system is not fully understood. We compared the expression profiles of miRNAs and mRNAs in lamina propria leukocytes (LPL) in the large intestines of germ-free (GF) and specific pathogen-free (SPF) mice. Microarray analysis revealed different expression profiles of miRNAs and mRNAs between GF and SPF mice. Quantitative real time-PCR (qRT-PCR) showed that the level of miR-200 family members was significantly higher in SPF mice than in GF mice. In silico prediction followed by qRT-PCR suggested that Bcl11b, Ets1, Gbp7, Stat5b, and Zeb1 genes were downregulated by the miR-200 family. Western blotting revealed that the expression of BCL11B and ETS-1, but not ZEB1, in large intestinal LPL was significantly lower in SPF mice than in GF mice. Interleukin (IL)-2 production in cultured LPL upon stimulation with phorbol 12-myristate 13-acetate and ionomycin for 24 h was significantly lower in SPF mice than in GF mice. Conventionalization of GF mice substantially recapitulated SPF mice in terms of the expression of miR-200 family members and their target genes and IL-2 production in large intestinal LPL. Considering that BCL11B and ETS-1 reportedly function as transcription factors to activate the Il2 gene, we propose that the presence of gut commensals suppresses IL-2 production in large intestinal LPL, at least in part through post-transcriptional downregulation of Bcl11b and Ets1 genes by miR-200 family members.

Original languageEnglish
Pages (from-to)808-814
Number of pages7
JournalBiochemical and Biophysical Research Communications
Volume534
DOIs
Publication statusPublished - 01-01-2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Gut commensals suppress interleukin-2 production through microRNA-200/BCL11B and microRNA-200/ETS-1 axes in lamina propria leukocytes of murine large intestine'. Together they form a unique fingerprint.

Cite this