Heart-derived collagen promotes maturation of engineered heart tissue

Hidenori Tani, Eiji Kobayashi, Shinomi Yagi, Keisuke Tanaka, Kotaro Kameda-Haga, Shinsuke Shibata, Nobuko Moritoki, Kaworu Takatsuna, Taijun Moriwaki, Otoya Sekine, Tomohiko C. Umei, Yuika Morita, Yusuke Soma, Yoshikazu Kishino, Hideaki Kanazawa, Jun Fujita, Shunji Hattori, Keiichi Fukuda, Shugo Tohyama

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Although the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.

Original languageEnglish
Article number122174
JournalBiomaterials
Volume299
DOIs
Publication statusPublished - 08-2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Ceramics and Composites
  • Biomaterials
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Heart-derived collagen promotes maturation of engineered heart tissue'. Together they form a unique fingerprint.

Cite this