TY - JOUR
T1 - Hyperglycemia attenuates receptor activator of NF-κB ligand–induced macrophage activation by suppressing insulin signaling
AU - Kurihara, Chitaru
AU - Tanaka, Teruyoshi
AU - Yamanouchi, Dai
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017/6/15
Y1 - 2017/6/15
N2 - Background Although male gender, aging, hypertension, dyslipidemia, and smoking are common risk factors for abdominal aortic aneurysm, diabetes mellitus is an independent negative risk factor. In aneurysm tissue, matrix metalloproteinases (MMPs) expressed by activated macrophages degrades extracellular matrix proteins. In our previous experimental study, we demonstrated that the aneurysmal formation and macrophage activity were suppressed by inhibiting mimicking hyperglycemia (HG) through upregulation of glucose-sensing nuclear receptor, Nr1h2. Here in this study, we focused on the role of HG-induced altered glucose uptake on macrophage activation. Methods RAW264.7 murine macrophage cells were pretreated in cultures containing HG (HG group, 15.5 mM) or normal glucose (NG) concentrations (NG group, 5.5 mM) for 7 d. The culture medium was then changed in both groups to NG conditions, and the cells were stimulated with recombinant murine soluble receptor activator of NF-κB ligand (sRANKL). Macrophage activation was confirmed by tartrate-resistant acid phosphatase (TRAP) staining. Results Compared with the NG group, MMP-9 expression in the HG group was significantly suppressed. Glucose uptake was increased in the NG group but not in the HG group during macrophage activation. To determine the mechanism of activation, we studied the expression and distribution of glucose transporters (Gluts) in the macrophages. Although Glut expression was unaffected by glucose pretreatment, membrane translocation of Glut-1 was significantly enhanced in macrophages in the NG group but not in the HG group during activation. Insulin receptor and insulin receptor substrate-1 (IRS-1) messenger RNA, known stimulate to membrane translocation of Gluts, were both decreased by the HG condition but not by the NG condition. Conclusions HG pretreatment suppressed the macrophage activation. sRANKL increased macrophage glucose uptake at NG concentrations, which was impaired by HG pretreatment through the inhibition of Glut1 membrane translocation and the insulin receptor and IRS-1 gene transcription. These data suggest that HG suppressed macrophage activation, through attenuation of glucose uptake via the suppression of the membrane translocation of Glut1 and insulin signaling.
AB - Background Although male gender, aging, hypertension, dyslipidemia, and smoking are common risk factors for abdominal aortic aneurysm, diabetes mellitus is an independent negative risk factor. In aneurysm tissue, matrix metalloproteinases (MMPs) expressed by activated macrophages degrades extracellular matrix proteins. In our previous experimental study, we demonstrated that the aneurysmal formation and macrophage activity were suppressed by inhibiting mimicking hyperglycemia (HG) through upregulation of glucose-sensing nuclear receptor, Nr1h2. Here in this study, we focused on the role of HG-induced altered glucose uptake on macrophage activation. Methods RAW264.7 murine macrophage cells were pretreated in cultures containing HG (HG group, 15.5 mM) or normal glucose (NG) concentrations (NG group, 5.5 mM) for 7 d. The culture medium was then changed in both groups to NG conditions, and the cells were stimulated with recombinant murine soluble receptor activator of NF-κB ligand (sRANKL). Macrophage activation was confirmed by tartrate-resistant acid phosphatase (TRAP) staining. Results Compared with the NG group, MMP-9 expression in the HG group was significantly suppressed. Glucose uptake was increased in the NG group but not in the HG group during macrophage activation. To determine the mechanism of activation, we studied the expression and distribution of glucose transporters (Gluts) in the macrophages. Although Glut expression was unaffected by glucose pretreatment, membrane translocation of Glut-1 was significantly enhanced in macrophages in the NG group but not in the HG group during activation. Insulin receptor and insulin receptor substrate-1 (IRS-1) messenger RNA, known stimulate to membrane translocation of Gluts, were both decreased by the HG condition but not by the NG condition. Conclusions HG pretreatment suppressed the macrophage activation. sRANKL increased macrophage glucose uptake at NG concentrations, which was impaired by HG pretreatment through the inhibition of Glut1 membrane translocation and the insulin receptor and IRS-1 gene transcription. These data suggest that HG suppressed macrophage activation, through attenuation of glucose uptake via the suppression of the membrane translocation of Glut1 and insulin signaling.
UR - http://www.scopus.com/inward/record.url?scp=85017103847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017103847&partnerID=8YFLogxK
U2 - 10.1016/j.jss.2017.02.009
DO - 10.1016/j.jss.2017.02.009
M3 - Article
C2 - 28624040
AN - SCOPUS:85017103847
SN - 0022-4804
VL - 214
SP - 168
EP - 175
JO - Journal of Surgical Research
JF - Journal of Surgical Research
ER -