TY - JOUR
T1 - Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice
AU - Lacombe, Séverine
AU - Nagasaki, Hiroshi
AU - Santi, Carole
AU - Duval, David
AU - Piégu, Benot
AU - Bangratz, Martine
AU - Breitler, Jean Christophe
AU - Guiderdoni, Emmanuel
AU - Brugidou, Christophe
AU - Hirsch, Judith
AU - Cao, Xiaofeng
AU - Brice, Claire
AU - Panaud, Olivier
AU - Karlowski, Wojciech M.
AU - Sato, Yutaka
AU - Echeverria, Manuel
N1 - Funding Information:
This project was supported by Agence Nationale pour la Recherche (Project NT05-3_42996), by program CNRS-JSPS (N° PRC449), by Grants-in-Aid for Scientific Research on Priority Areas (20061015) from the Ministry of Education, Science, Culture, and Sports (Japan) and by PRESTO program from Japan Science and Technology agency.
PY - 2008
Y1 - 2008
N2 - Background. The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein. In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets. Results. We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively. In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site. Conclusion. The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.
AB - Background. The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein. In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets. Results. We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively. In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site. Conclusion. The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.
UR - http://www.scopus.com/inward/record.url?scp=58049216575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58049216575&partnerID=8YFLogxK
U2 - 10.1186/1471-2229-8-123
DO - 10.1186/1471-2229-8-123
M3 - Article
C2 - 19055717
AN - SCOPUS:58049216575
SN - 1471-2229
VL - 8
JO - BMC Plant Biology
JF - BMC Plant Biology
M1 - 123
ER -