Ido2 Deficiency Exacerbates Motor Impairment and Reduces Aryl Hydrocarbon Receptor Activity through Decreased Kynurenine in a Chronic Demyelinating Mouse Model

Kazuo Kunisawa, Mitsuki Hara, Koyo Yoshidomi, Yuki Kon, Yasuko Yamamoto, Suwako Fujigaki, Bolati Wulaer, Aika Kosuge, Moeka Tanabe, Sei Saitoh, Kazuo Takahashi, Kuniaki Saito, Toshitaka Nabeshima, Akihiro Mouri

Research output: Contribution to journalArticlepeer-review

Abstract

Demyelinating diseases including multiple sclerosis (MS) are chronic inflammatory diseases of the central nervous system. Indoleamine 2,3-dioxygenase 2 (Ido2) is a recently identified as catalytic enzyme involved in the rate-limiting step of the tryptophan-kynurenine pathway that influences susceptibility to inflammatory diseases. However, the pathological role of Ido2 in demyelination remains unclear. In this study, we investigated whether Ido2 deficiency influences the pathogenesis of proteolipid protein transgenic (Plp tg) mice, an animal model of chronic demyelination. Ido2 deficiency exacerbates impairments of motor function in the locomotor activity test, wire hanging test, and rotarod test. Ido2 deficiency caused severe demyelination associated with CD68-positive microglial activation in Plp tg mice. In the cerebellum of Plp tg mice, Ido2 deficiency significantly increased the expression of Tnfα. Ido2 deficiency reduced tryptophan metabolite kynurenine (KYN) levels and subsequent aryl hydrocarbon receptor (AhR) activity, which play an important role in anti-inflammatory response. These results suggest that Ido2 has an important role in preventing demyelination through AhR. Taken together, Ido2 could be a potential therapeutic target for demyelinating diseases.

Original languageEnglish
JournalMolecular Neurobiology
DOIs
Publication statusAccepted/In press - 2024

All Science Journal Classification (ASJC) codes

  • Neuroscience (miscellaneous)
  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Ido2 Deficiency Exacerbates Motor Impairment and Reduces Aryl Hydrocarbon Receptor Activity through Decreased Kynurenine in a Chronic Demyelinating Mouse Model'. Together they form a unique fingerprint.

Cite this