Impact of serum magnesium and bone mineral density on systemic fractures in chronic hemodialysis patients

Mayuko Hori, Kaoru Yasuda, Hiroshi Takahashi, Chikao Yamazaki, Kunio Morozumi, Shoichi Maruyama

Research output: Contribution to journalArticlepeer-review

Abstract

Introduction Bone mineral density (BMD) measured with dual-energy X-ray absorptiometry (DXA) can be used to predict fractures, but its clinical utility has not been fully established in chronic kidney disease (CKD) patients. Magnesium is an essential trace element. Although magnesium is associated with the risk of fractures in non-CKD populations, the relationship is unknown in CKD patients. Methods BMD and serum magnesium levels were measured in 358 stable outpatients undergoing maintenance hemodialysis therapy. The primary outcome was fragility fracture. Patients were divided into groups according to the median level of magnesium and the normal threshold value of lumbar spine BMD. Results During the median follow-up period of 36 months, 36 (10.0%) fractures occurred. The cumulative incidence rates of fractures were 17.6% and 5.2% [adjusted hazard ratio (aHR) 2.31, 95% confidence interval (CI) 1.03–5.17, P = 0.030] in the lower (<2.6 mg/dL) and higher (>2.6 mg/dL) magnesium (Mg) groups, respectively, and 21.2% and 7.3% (aHR 2.59, 95% CI 1.09–6.16, P = 0.027) in the low- and high-BMD groups, respectively. The lower-Mg and low-BMD group had a 9.21-fold higher risk of fractures (95% CI; 2.35–47.00; P = 0.0010) than the higher-Mg and high-BMD group. Furthermore, adding both magnesium levels and lumbar spine BMD levels to the established risk factors significantly improved the prediction of fractures (C-index: 0.784 to 0.830, p = 0.041). Discussion/Conclusions The combination of serum magnesium and lumbar spine BMD can be used for fracture risk stratification and synergistically improves the prediction of fractures in CKD patients.

Original languageEnglish
Article numbere0251912
JournalPloS one
Volume16
Issue number5 May
DOIs
Publication statusPublished - 05-2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Impact of serum magnesium and bone mineral density on systemic fractures in chronic hemodialysis patients'. Together they form a unique fingerprint.

Cite this