Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

Hitoshi Nagura, Yasuyuki Ishikawa, Katsunori Kobayashi, Keizo Takao, Tomo Tanaka, Kouki Nishikawa, Hideki Tamura, Sadao Shiosaka, Hidenori Suzuki, Tsuyoshi Miyakawa, Yoshinori Fujiyoshi, Tomoko Doi

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Background: Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results: The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions: These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

Original languageEnglish
Article number43
JournalMolecular brain
Volume5
Issue number1
DOIs
Publication statusPublished - 28-12-2012

Fingerprint

Post-Synaptic Density
Cluster Analysis
Learning
Ligands
Neurons
Long-Term Potentiation
AMPA Receptors
N-Methyl-D-Aspartate Receptors
Hippocampus
postsynaptic density proteins
Guanylate Kinases
Perforant Pathway
PDZ Domains
Hippocampal CA1 Region
Neuronal Plasticity
Long-Term Memory
Dentate Gyrus
Short-Term Memory
Synaptic Transmission
Synapses

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cellular and Molecular Neuroscience

Cite this

Nagura, Hitoshi ; Ishikawa, Yasuyuki ; Kobayashi, Katsunori ; Takao, Keizo ; Tanaka, Tomo ; Nishikawa, Kouki ; Tamura, Hideki ; Shiosaka, Sadao ; Suzuki, Hidenori ; Miyakawa, Tsuyoshi ; Fujiyoshi, Yoshinori ; Doi, Tomoko. / Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice. In: Molecular brain. 2012 ; Vol. 5, No. 1.
@article{f23c84b47e484c869016eeac401ad6a3,
title = "Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice",
abstract = "Background: Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results: The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions: These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.",
author = "Hitoshi Nagura and Yasuyuki Ishikawa and Katsunori Kobayashi and Keizo Takao and Tomo Tanaka and Kouki Nishikawa and Hideki Tamura and Sadao Shiosaka and Hidenori Suzuki and Tsuyoshi Miyakawa and Yoshinori Fujiyoshi and Tomoko Doi",
year = "2012",
month = "12",
day = "28",
doi = "10.1186/1756-6606-5-43",
language = "English",
volume = "5",
journal = "Molecular Brain",
issn = "1756-6606",
publisher = "BioMed Central",
number = "1",

}

Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice. / Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko.

In: Molecular brain, Vol. 5, No. 1, 43, 28.12.2012.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

AU - Nagura, Hitoshi

AU - Ishikawa, Yasuyuki

AU - Kobayashi, Katsunori

AU - Takao, Keizo

AU - Tanaka, Tomo

AU - Nishikawa, Kouki

AU - Tamura, Hideki

AU - Shiosaka, Sadao

AU - Suzuki, Hidenori

AU - Miyakawa, Tsuyoshi

AU - Fujiyoshi, Yoshinori

AU - Doi, Tomoko

PY - 2012/12/28

Y1 - 2012/12/28

N2 - Background: Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results: The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions: These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

AB - Background: Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results: The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions: These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

UR - http://www.scopus.com/inward/record.url?scp=84871503854&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871503854&partnerID=8YFLogxK

U2 - 10.1186/1756-6606-5-43

DO - 10.1186/1756-6606-5-43

M3 - Article

C2 - 23268962

AN - SCOPUS:84871503854

VL - 5

JO - Molecular Brain

JF - Molecular Brain

SN - 1756-6606

IS - 1

M1 - 43

ER -