TY - JOUR
T1 - In vivo PET imaging of the α4β2 nicotinic acetylcholine receptor as a marker for brain inflammation after cerebral ischemia
AU - Martín, Abraham
AU - Szczupak, Boguslaw
AU - Gómez-Vallejo, Vanessa
AU - Domercq, Maria
AU - Cano, Ainhoa
AU - Padro, Daniel
AU - Muñoz, Clara
AU - Higuchi, Makoto
AU - Matute, Carlos
AU - Llop, Jordi
N1 - Publisher Copyright:
© 2015 the authors.
PY - 2015/4/15
Y1 - 2015/4/15
N2 - PET imaging of nicotinic acetylcholine receptors (nAChRs) could become an effective tool for the diagnosis and therapy evaluation of neurologic diseases. Despite this, the role of nAChRs α4β2 receptors after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. To investigate this, we performed in parallel in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) with 2[18F]-fluoro-A85380 and [11C]PK11195 at 1, 3, 7, 14, 21, and 28 d after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with 2[18F]-fluoro-A85380 and [11C]PK11195 showed a progressive binding increase from days 3–7, followed by a progressive decrease from days 14–28 after cerebral ischemia onset. Ex vivo immunohistochemistry for the nicotinic α4β2 receptor and the mitochondrial translocator protein (18 kDa) (TSPO) confirmed the PET findings and demonstrated the overexpression of α4β2 receptors in both microglia/macrophages and astrocytes from days 7–28 after experimental ischemic stroke. Likewise, the role played by α4β2 receptors on neuroinflammation was supported by the increase of [11C]PK11195 binding in ischemic rats treated with the α4β2 antagonist dihydro-β-erythroidine hydrobromide (DHBE) at day 7 after MCAO. Finally, both functional and behavioral testing showed major impaired outcome at day 1 after ischemia onset, followed by a recovery of the sensorimotor function and dexterity from days 21–28 after experimental stroke. Together, these results suggest that the nicotinic α4β2 receptor could have a key role in the inflammatory reaction underlying cerebral ischemia in rats.
AB - PET imaging of nicotinic acetylcholine receptors (nAChRs) could become an effective tool for the diagnosis and therapy evaluation of neurologic diseases. Despite this, the role of nAChRs α4β2 receptors after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. To investigate this, we performed in parallel in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) with 2[18F]-fluoro-A85380 and [11C]PK11195 at 1, 3, 7, 14, 21, and 28 d after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with 2[18F]-fluoro-A85380 and [11C]PK11195 showed a progressive binding increase from days 3–7, followed by a progressive decrease from days 14–28 after cerebral ischemia onset. Ex vivo immunohistochemistry for the nicotinic α4β2 receptor and the mitochondrial translocator protein (18 kDa) (TSPO) confirmed the PET findings and demonstrated the overexpression of α4β2 receptors in both microglia/macrophages and astrocytes from days 7–28 after experimental ischemic stroke. Likewise, the role played by α4β2 receptors on neuroinflammation was supported by the increase of [11C]PK11195 binding in ischemic rats treated with the α4β2 antagonist dihydro-β-erythroidine hydrobromide (DHBE) at day 7 after MCAO. Finally, both functional and behavioral testing showed major impaired outcome at day 1 after ischemia onset, followed by a recovery of the sensorimotor function and dexterity from days 21–28 after experimental stroke. Together, these results suggest that the nicotinic α4β2 receptor could have a key role in the inflammatory reaction underlying cerebral ischemia in rats.
UR - http://www.scopus.com/inward/record.url?scp=84929232376&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929232376&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3670-14.2015
DO - 10.1523/JNEUROSCI.3670-14.2015
M3 - Article
C2 - 25878273
AN - SCOPUS:84929232376
SN - 0270-6474
VL - 35
SP - 5998
EP - 6009
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 15
ER -