TY - JOUR
T1 - Increased behavioral and neuronal responses to a hallucinogenic drug in PACAP heterozygous mutant mice
AU - Hazama, Keisuke
AU - Hayata-Takano, Atsuko
AU - Uetsuki, Kazuki
AU - Kasai, Atsushi
AU - Encho, Naoki
AU - Shintani, Norihito
AU - Nagayasu, Kazuki
AU - Hashimoto, Ryota
AU - Reglodi, Dora
AU - Miyakawa, Tsuyoshi
AU - Nakazawa, Takanobu
AU - Baba, Akemichi
AU - Hashimoto, Hitoshi
PY - 2014/2/20
Y1 - 2014/2/20
N2 - Accumulating evidence from human genetic studies implicates the pituitary adenylate cyclase-activating polypeptide (PACAP) gene as a risk factor for psychiatric disorders, including schizophrenia and stress-related diseases. Mice with homozygous disruption of the PACAP gene display profound behavioral and neurological abnormalities that are ameliorated with the atypical antipsychotic and dopamine D2 and serotonin (5-HT)2 antagonist risperidone and the 5-HT2 receptor antagonist ritanserin; however, the underlying mechanisms remain unknown. Here, we investigated if PACAP heterozygous mutant (PACAP+/-) mice, which appear behaviorally normal, are vulnerable to aversive stimuli. PACAP+/- mice were administered a 5-HT2 receptor agonist, (±)-2,5-dimethoxy-4- iodoamphetamine (DOI), a hallucinogenic drug, and their responses were compared with the littermate wild-type mice. After DOI injection, PACAP+/- mice showed increased head-twitch responses, while their behavior was normal after saline. DOI induced deficits in sensorimotor gating, as determined by prepulse inhibition, specifically in PACAP+/- mice. However, other 5-HT2 receptor-dependent responses, such as corticosterone release and hypothermia, were similarly observed in PACAP+/- and wild-type mice. c-Fos expression analysis, performed in various brain regions, revealed that the DOI-induced increase in the number of c-Fos-positive cells was more pronounced in 5-HT2A receptor-negative cells in the somatosensory cortex in PACAP+/- mice compared with wild-type mice. These results indicate that PACAP+/- mice exhibit specific vulnerability to DOI-induced deficits in cortical sensory function, such as exaggerated head-twitch responses and sensorimotor gating deficits. Our findings provide insight into the neural mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are implicated.
AB - Accumulating evidence from human genetic studies implicates the pituitary adenylate cyclase-activating polypeptide (PACAP) gene as a risk factor for psychiatric disorders, including schizophrenia and stress-related diseases. Mice with homozygous disruption of the PACAP gene display profound behavioral and neurological abnormalities that are ameliorated with the atypical antipsychotic and dopamine D2 and serotonin (5-HT)2 antagonist risperidone and the 5-HT2 receptor antagonist ritanserin; however, the underlying mechanisms remain unknown. Here, we investigated if PACAP heterozygous mutant (PACAP+/-) mice, which appear behaviorally normal, are vulnerable to aversive stimuli. PACAP+/- mice were administered a 5-HT2 receptor agonist, (±)-2,5-dimethoxy-4- iodoamphetamine (DOI), a hallucinogenic drug, and their responses were compared with the littermate wild-type mice. After DOI injection, PACAP+/- mice showed increased head-twitch responses, while their behavior was normal after saline. DOI induced deficits in sensorimotor gating, as determined by prepulse inhibition, specifically in PACAP+/- mice. However, other 5-HT2 receptor-dependent responses, such as corticosterone release and hypothermia, were similarly observed in PACAP+/- and wild-type mice. c-Fos expression analysis, performed in various brain regions, revealed that the DOI-induced increase in the number of c-Fos-positive cells was more pronounced in 5-HT2A receptor-negative cells in the somatosensory cortex in PACAP+/- mice compared with wild-type mice. These results indicate that PACAP+/- mice exhibit specific vulnerability to DOI-induced deficits in cortical sensory function, such as exaggerated head-twitch responses and sensorimotor gating deficits. Our findings provide insight into the neural mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are implicated.
UR - http://www.scopus.com/inward/record.url?scp=84895863908&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84895863908&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0089153
DO - 10.1371/journal.pone.0089153
M3 - Article
C2 - 24586556
AN - SCOPUS:84895863908
SN - 1932-6203
VL - 9
JO - PloS one
JF - PloS one
IS - 2
M1 - e89153
ER -