TY - JOUR
T1 - Inhibition of fosfomycin resistance protein FosA by phosphonoformate (foscarnet) in multidrug-resistant gram-negative pathogens
AU - Ito, Ryota
AU - Tomich, Adam D.
AU - McElheny, Christi L.
AU - Mettus, Roberta T.
AU - Sluis-Cremer, Nicolas
AU - Doi, Yohei
N1 - Publisher Copyright:
Copyright © 2017 American Society for Microbiology. All Rights Reserved.
PY - 2017/12
Y1 - 2017/12
N2 - FosA proteins confer fosfomycin resistance to Gram-negative pathogens via glutathione-mediated modification of the antibiotic. In this study, we assessed whether inhibition of FosA by sodium phosphonoformate (PPF) (foscarnet), a clinically approved antiviral agent, would reverse fosfomycin resistance in representative Gram-negative pathogens. The inhibitory activity of PPF against purified recombinant FosA from Escherichia coli (FosA3), Klebsiella pneumoniae (FosAKP), Enterobacter cloacae (FosAEC), and Pseudomonas aeruginosa (FosAPA) was determined by steady-state kinetic measurements. The antibacterial activity of PPF against FosA in clinical strains of these species was evaluated by susceptibility testing and time-kill assays. PPF increased the Michaelis constant (Km) for fosfomycin in a dose-dependent manner, without affecting the maximum rate (Vmax) of the reaction, for all four FosA enzymes tested, indicating a competitive mechanism of inhibition. Inhibitory constant (Ki) values were 22.6, 35.8, 24.4, and 56.3 M for FosAKP, FosAEC, FosAPA, and FosA3, respectively. Addition of clinically achievable concentrations of PPF (667 M) reduced the fosfomycin MICs by 4-fold among 52% of the K. pneumoniae, E. cloacae, and P. aeruginosa clinical strains tested and led to a bacteriostatic or bactericidal effect in time-kill assays among representative strains. PPF inhibits FosA activity across Gram-negative species and can potentiate fosfomycin activity against the majority of strains with chromosomally encoded fosA. These data suggest that PPF may be re-purposed as an adjuvant for fosfomycin to treat infections caused by some FosA-producing, multidrug-resistant, Gram-negative pathogens.
AB - FosA proteins confer fosfomycin resistance to Gram-negative pathogens via glutathione-mediated modification of the antibiotic. In this study, we assessed whether inhibition of FosA by sodium phosphonoformate (PPF) (foscarnet), a clinically approved antiviral agent, would reverse fosfomycin resistance in representative Gram-negative pathogens. The inhibitory activity of PPF against purified recombinant FosA from Escherichia coli (FosA3), Klebsiella pneumoniae (FosAKP), Enterobacter cloacae (FosAEC), and Pseudomonas aeruginosa (FosAPA) was determined by steady-state kinetic measurements. The antibacterial activity of PPF against FosA in clinical strains of these species was evaluated by susceptibility testing and time-kill assays. PPF increased the Michaelis constant (Km) for fosfomycin in a dose-dependent manner, without affecting the maximum rate (Vmax) of the reaction, for all four FosA enzymes tested, indicating a competitive mechanism of inhibition. Inhibitory constant (Ki) values were 22.6, 35.8, 24.4, and 56.3 M for FosAKP, FosAEC, FosAPA, and FosA3, respectively. Addition of clinically achievable concentrations of PPF (667 M) reduced the fosfomycin MICs by 4-fold among 52% of the K. pneumoniae, E. cloacae, and P. aeruginosa clinical strains tested and led to a bacteriostatic or bactericidal effect in time-kill assays among representative strains. PPF inhibits FosA activity across Gram-negative species and can potentiate fosfomycin activity against the majority of strains with chromosomally encoded fosA. These data suggest that PPF may be re-purposed as an adjuvant for fosfomycin to treat infections caused by some FosA-producing, multidrug-resistant, Gram-negative pathogens.
UR - http://www.scopus.com/inward/record.url?scp=85034762219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034762219&partnerID=8YFLogxK
U2 - 10.1128/AAC.01424-17
DO - 10.1128/AAC.01424-17
M3 - Article
C2 - 28993329
AN - SCOPUS:85034762219
SN - 0066-4804
VL - 61
JO - Antimicrobial agents and chemotherapy
JF - Antimicrobial agents and chemotherapy
IS - 12
M1 - e01424
ER -