Initial results of a mouse brain PET insert with a staggered 3-layer DOI detector

Han Gyu Kang, Hideaki Tashima, Fumihiko Nishikido, Go Akamatsu, Hidekazu Wakizaka, Makoto Higuchi, Taiga Yamaya

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Objective. Small animal positron emission tomography (PET) requires a submillimeter resolution for better quantification of radiopharmaceuticals. On the other hand, depth-of-interaction (DOI) information is essential to preserve the spatial resolution while maintaining the sensitivity. Recently, we developed a staggered 3-layer DOI detector with 1 mm crystal pitch and 15 mm total crystal thickness, but we did not demonstrate the imaging performance of the DOI detector with full ring geometry. In this study we present initial imaging results obtained for a mouse brain PET prototype developed with the staggered 3-layer DOI detector. Approach. The prototype had 53 mm inner diameter and 11 mm axial field-of-view. The PET scanner consisted of 16 DOI detectors each of which had a staggered 3-layer LYSO crystal array (4/4/7 mm) coupled to a 4 × 4 silicon photomultiplier array. The physical performance was evaluated in terms of the NEMA NU 4 2008 protocol. Main Results. The measured spatial resolutions at the center and 15 mm radial offset were 0.67 mm and 1.56 mm for filtered-back-projection, respectively. The peak absolute sensitivity of 0.74% was obtained with an energy window of 400-600 keV. The resolution phantom imaging results show the clear identification of a submillimetric rod pattern with the ordered-subset expectation maximization algorithm. The inter-crystal scatter rejection using a narrow energy window could enhance the resolvability of a 0.75 mm rod significantly. Significance. In an animal imaging experiment, the detailed mouse brain structures such as cortex and thalamus were clearly identified with high contrast. In conclusion, we successfully developed the mouse brain PET insert prototype with a staggered 3-layer DOI detector.

Original languageEnglish
Article number215015
JournalPhysics in Medicine and Biology
Volume66
Issue number21
DOIs
Publication statusPublished - 07-11-2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Initial results of a mouse brain PET insert with a staggered 3-layer DOI detector'. Together they form a unique fingerprint.

Cite this