Involvement of brain structures in childhood epilepsy with centrotemporal spikes

Yuji Ito, Yuki Maki, Yu Okai, Hiroyuki Kidokoro, Epifanio Bagarinao, Tomoya Takeuchi, Atsuko Ohno, Tomohiko Nakata, Naoko Ishihara, Akihisa Okumura, Hiroyuki Yamamoto, Satoshi Maesawa, Jun Natsume

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND: We aimed to investigate electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) findings to elucidate the interictal epileptiform discharge (IED)-related functional alterations in deep brain structures and the neocortex in childhood epilepsy with centrotemporal spikes (CECTS). METHODS: Ten children with CECTS (median age 8.2 years), referred to our hospital within a year of onset, were eligible for inclusion. They underwent EEG-fMRI recording during sleep. Llongitudinal evaluations, including medical examinations, intelligence tests, and questionnaires about developmental disabilities, were performed. The initial evaluation was performed at the same time as the EEG-fMRI, and the second evaluation was performed over 2 years after the initial evaluation. RESULTS: Three children were unable to maintain sleep during the EEG-fMRI recording, and the remaining seven children were eligible for further assessment. All patients showed unilateral-dominant centrotemporal spikes during scans. One patient had only positive hemodynamic responses, while the others had both positive and negative hemodynamic responses. All patients showed IED-related hemodynamic responses in the bilateral neocortex. For deep brain structures, IED-related hemodynamic responses were observed in the cingulate gyrus (n = 4), basal ganglia (n = 3), thalamus (n = 2), and default mode network (n = 1). Seizure frequencies at the second evaluation were infrequent or absent, and the longitudinal results of intelligence tests and questionnaires were within normal ranges. CONCLUSIONS: We demonstrated that IEDs affect broad brain areas, including deep brain structures such as the cingulate gyrus, basal ganglia, and thalamus. Deep brain structures may play an important role in the pathophysiology of CECTS.

Original languageEnglish
Pages (from-to)e15001
JournalPediatrics International
Volume64
Issue number1
DOIs
Publication statusPublished - 01-01-2022

All Science Journal Classification (ASJC) codes

  • Pediatrics, Perinatology, and Child Health

Fingerprint

Dive into the research topics of 'Involvement of brain structures in childhood epilepsy with centrotemporal spikes'. Together they form a unique fingerprint.

Cite this