Abstract
An endogenous dopamine-derived N-methyl(R)salsolinol has been suggested to be involved in the pathogenesis of Parkinson's disease. In Parkinson's disease, the level of N-methyl(R)salsolinol increased in cerebrospinal fluid and the high activity of a synthesizing enzyme, (R)salsolinol N-methyltransferase, was detected in lymphocytes. This isoquinoline induced apoptotic DNA damage in human dopaminergic neuroblastoma SH-SY5Y cells. Among catechol isoquinolines, only N-methylsalsolinol induced apoptosis in the cells, and the scavengers of hydroxyl radicals and antioxidants suppressed DNA damage, suggesting that reactive oxygen species initiate apoptosis. The isoquinoline activated caspase-3 like proteases and a caspase-3 inhibitor protected the cells from DNA damge. (-)Deprenyl, but neither clorgyline nor pargyline, prevented apoptotic cell death. The mechanism of the protection was due to stabilization of mitochondrial membrane potential reduced by the toxin. In Parkinson's disease apoptosis may be induced in dopamine neurons by this endogenous neurotoxin, and (-)deprenyl may protect them from apoptotic death process.
Original language | English |
---|---|
Pages (from-to) | 111-121 |
Number of pages | 11 |
Journal | Journal of Neural Transmission, Supplement |
Issue number | 58 |
DOIs | |
Publication status | Published - 2000 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Neurology
- Clinical Neurology
- Psychiatry and Mental health
- Biological Psychiatry