Ion transport regulated by protease-activated receptor 2 in human airway Calu-3 epithelia

Shinji Sato, Yasushi Ito, Masashi Kondo, Takamasa Ohashi, Satoru Ito, Shinsuke Nakayama, Kaoru Shimokata, Hiroaki Kume

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


We examined the mechanisms underlying anion secretion mediated by protease-activated receptor 2 (PAR2) and its role in the regulation of ion transport, using polarized human airway Calu-3 cells. PAR2 stimulation by trypsin and a PAR2-activating peptide (PAR2AP), especially from the basolateral aspect, caused transient Cl - secretion due to cytosolic Ca 2+ mobilization. Antagonists of PI-PLC (U73122, ET-18-OCH 3) and inositol 1,4,5-triphosphate (xestospongin C (Xest C)) were without effect on the PAR2AP-mediated Cl - secretion, whereas it was attenuated by D609 (a PC-PLC inhibitor) and phorbol 12-myristate 13 acetate (PMA, a PKC activator). Even 30 min after removal of PAR2AP after a 10-min-exposure, cells were still poorly responsive to PAR2 stimulation, but the reduced responsiveness was upregulated by a PKC inhibitor, GF109203X (GFX). Pretreatment with PAR2AP did not affect responses to anion secretagogues, such as isoproterenol, forskolin, thapsigargin, 1-ethyl-2-benzimdazolinone, and adenosine, but ATP-induced responses were significantly reduced. Nystatin permeabilization studies revealed that the presence of PAR2AP prevented ATP-induced increments in basolateral membrane K + conductance without affecting apical membrane Cl - conductance. ATP-elicited Ca 2+ mobilization, which was sensitive to D609 and PMA, was inhibited by the pretreatment with PAR2AP, and this inhibition was blunted by the presence of GFX. Collectively, stimulation of PAR2 generates a brief response of Cl - secretion through PC-PLC-mediated pathway, followed by not only auto-desensitization of PAR2 itself but also cross-desensitization of a PC-PLC-coupled purinoceptor. The two types of desensitization seem likely to have PKC-mediated downregulation of PC-PLC in common.

Original languageEnglish
Pages (from-to)397-407
Number of pages11
JournalBritish Journal of Pharmacology
Issue number3
Publication statusPublished - 10-2005
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Pharmacology


Dive into the research topics of 'Ion transport regulated by protease-activated receptor 2 in human airway Calu-3 epithelia'. Together they form a unique fingerprint.

Cite this