Kanphos: A database of kinase-associated neural protein phosphorylation in the brain

Rijwan Uddin Ahammad, Tomoki Nishioka, Junichiro Yoshimoto, Takayuki Kannon, Mutsuki Amano, Yasuhiro Funahashi, Daisuke Tsuboi, Md Omar Faruk, Yukie Yamahashi, Kiyofumi Yamada, Taku Nagai, Kozo Kaibuchi

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Protein phosphorylation plays critical roles in a variety of intracellular signaling pathways and physiological functions that are controlled by neurotransmitters and neuromodulators in the brain. Dysregulation of these signaling pathways has been implicated in neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. While recent advances in mass spectrometry-based proteomics have allowed us to identify approximately 280,000 phosphorylation sites, it remains largely unknown which sites are phosphorylated by which kinases. To overcome this issue, previously, we developed methods for comprehensive screening of the target substrates of given kinases, such as PKA and Rho-kinase, upon stimulation by extracellular signals and identified many candidate substrates for specific kinases and their phosphorylation sites. Here, we developed a novel online database to provide information about the phosphorylation signals identified by our methods, as well as those previously reported in the literature. The “KANPHOS” (Kinase-Associated Neural Phospho-Signaling) database and its web portal were built based on a next-generation XooNIps neuroinformatics tool. To explore the functionality of the KANPHOS database, we obtained phosphoproteomics data for adenosine-A2A-receptor signaling and its downstream MAPK-mediated signaling in the striatum/nucleus accumbens, registered them in KANPHOS, and analyzed the related pathways.

Original languageEnglish
Article number47
Issue number1
Publication statusPublished - 01-01-2022

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology


Dive into the research topics of 'Kanphos: A database of kinase-associated neural protein phosphorylation in the brain'. Together they form a unique fingerprint.

Cite this