TY - JOUR
T1 - Learning/memory impairment and reduced expression of the HNK-1 carbohydrate in β4-galactosyltransferase-II-deficient mice
AU - Yoshihara, Toru
AU - Sugihara, Kazushi
AU - Kizuka, Yasuhiko
AU - Oka, Shogo
AU - Asano, Masahide
PY - 2009/5/1
Y1 - 2009/5/1
N2 - The glycosylation of glycoproteins and glycolipids is important for central nervous system development and function. Although the roles of several carbohydrate epitopes in the central nervous system, including polysialic acid, the human natural killer-1 (HNK-1) carbohydrate, α2, 3-sialic acid, and oligomannosides, have been investigated, those of the glycan backbone structures, such as Galβ1-4GlcNAc and Galβ1-3GlcNAc, are not fully examined. Here we report the generation of mice deficient in β4-galactosyltransferase-II (β4GalT-II). This galactosyltransferase transfers Gal from UDP-Gal to a nonreducing terminal GlcNAc to synthesize the Galβ1-4GlcNAc structure, and it is strongly expressed in the central nervous system. In behavioral tests, the β4GalT-II-/- mice showed normal spontaneous activity in a novel environment, but impaired spatial learning/memory and motor coordination/learning. Immunohistochemistry showed that the amount of HNK-1 carbohydrate was markedly decreased in the brain of β4GalT-II-/- mice, whereas the expression of polysialic acid was not affected. Furthermore, mice deficient in glucuronyltransferase (GlcAT-P), which is responsible for the biosynthesis of the HNK-1 carbohydrate, also showed impaired spatial learning/memory as described in our previous report, although their motor coordination/learning was normal as shown in this study. Histological examination showed abnormal alignment and reduced number of Purkinje cells in the cerebellum of β4GalT-II-/- mice. These results suggest that the Galβ1-4GlcNAc structure in the HNK-1 carbohydrate is mainly synthesized by β4GalT-II and that the glycans synthesized by β4GalT-II have essential roles in higher brain functions, including some that are HNK-1-dependent and some that are not.
AB - The glycosylation of glycoproteins and glycolipids is important for central nervous system development and function. Although the roles of several carbohydrate epitopes in the central nervous system, including polysialic acid, the human natural killer-1 (HNK-1) carbohydrate, α2, 3-sialic acid, and oligomannosides, have been investigated, those of the glycan backbone structures, such as Galβ1-4GlcNAc and Galβ1-3GlcNAc, are not fully examined. Here we report the generation of mice deficient in β4-galactosyltransferase-II (β4GalT-II). This galactosyltransferase transfers Gal from UDP-Gal to a nonreducing terminal GlcNAc to synthesize the Galβ1-4GlcNAc structure, and it is strongly expressed in the central nervous system. In behavioral tests, the β4GalT-II-/- mice showed normal spontaneous activity in a novel environment, but impaired spatial learning/memory and motor coordination/learning. Immunohistochemistry showed that the amount of HNK-1 carbohydrate was markedly decreased in the brain of β4GalT-II-/- mice, whereas the expression of polysialic acid was not affected. Furthermore, mice deficient in glucuronyltransferase (GlcAT-P), which is responsible for the biosynthesis of the HNK-1 carbohydrate, also showed impaired spatial learning/memory as described in our previous report, although their motor coordination/learning was normal as shown in this study. Histological examination showed abnormal alignment and reduced number of Purkinje cells in the cerebellum of β4GalT-II-/- mice. These results suggest that the Galβ1-4GlcNAc structure in the HNK-1 carbohydrate is mainly synthesized by β4GalT-II and that the glycans synthesized by β4GalT-II have essential roles in higher brain functions, including some that are HNK-1-dependent and some that are not.
UR - http://www.scopus.com/inward/record.url?scp=66449085707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66449085707&partnerID=8YFLogxK
U2 - 10.1074/jbc.M809188200
DO - 10.1074/jbc.M809188200
M3 - Article
C2 - 19265195
AN - SCOPUS:66449085707
SN - 0021-9258
VL - 284
SP - 12550
EP - 12561
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 18
ER -