Lipopolysaccharide extends the lifespan of mouse primary-cultured microglia

Yoko S. Kaneko, Akira Nakashima, Keiji Mori, Toshiharu Nagatsu, Ikuko Nagatsu, Akira Ota

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Microglial activation has been implicated in the recognition and phagocytic removal of degenerating neurons; however, this process must be tightly regulated in the central nervous system, because prolonged activation could damage normal neurons. We report that mouse primary-cultured microglia, which are destined to die within a few days under ordinary culture conditions, can live for more than 1 month when kept activated by lipopolysaccharide (LPS) treatment. Primary-cultured microglia treated with sublethal doses of LPS remained viable, without any measurable increase in apoptotic or necrotic cell death. LPS-treated microglia had an arborescent shape, with enlarged somata and thickened cell bodies. Although the amount of intracellular ATP in these microglia was reduced by 2 h after the start of LPS treatment, this had no effect on the viability of the cells. LPS treatment of microglia increased the antiapoptotic factor Bcl-xL protein level at day 1, although the level of the proapoptotic Bcl-associated X-protein was unaffected. Furthermore, the level of microtubule-associated light chain 3, a marker protein for autophagy, decreased at 3 h after exposure to LPS. These data show that the optimal dose of LPS suppresses the induction of both apoptosis and autophagy in primary-cultured microglia, allowing the cells to stay alive for more than 1 month. Because long-lived microglia may play critical roles in the exacerbation of neurodegeneration, our findings suggest that inducing a resting stage in active microglia could be a new and promising strategy to inhibit the deterioration of neurodegenerative disease.

Original languageEnglish
Pages (from-to)9-20
Number of pages12
JournalBrain Research
Publication statusPublished - 07-07-2009

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology


Dive into the research topics of 'Lipopolysaccharide extends the lifespan of mouse primary-cultured microglia'. Together they form a unique fingerprint.

Cite this