Localization and spatiotemporal expression of IDO following transient forebrain ischemia in gerbils

Ayako Taguchi, Akira Hara, Kuniaki Saito, Masato Hoshi, Masayuki Niwa, Mitsuru Seishima, Hideki Mori

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway that converts l-tryptophan to l-kynurenine. Transient forebrain ischemia initiates a series of cellular events that lead to the delayed neuronal degeneration of several brain regions. The goal of this study was to determine the localization of IDO in gerbil brain, and analyze the spatiotemporal expression of IDO in a transient forebrain ischemic model. Expression of IDO in the normal gerbil brain was observed by using immunohistochemistry. Time-course of the expression of IDO following transient forebrain ischemic gerbils was examined by immunohistochemistry, combined with hematoxylin and eosin staining for morphological analysis, and in situ terminal dUTP-biotin nick end labeling of DNA fragments (TUNEL) method. In normal gerbils, IDO immunostaining was observed in thalamus, hypothalamus and amygdaloid nucleus. IDO expression was negative in the cingulate cortex, hippocampal CA1 region and parietal cortex. Following transient ischemia, we observed a time-dependent increase of IDO expression in CA1, cingulate cortex and hypothalamus. The peak of IDO expression in CA1 and cingulate cortex occurred at 48 h after ischemic insult and diminished by 2 weeks. TUNEL staining was observed only in the CA1 region at 72 and 96 h after transient ischemia. Thus, IDO protein is present in specific regions in gerbil brain, and dynamic changes of IDO expression was observed in some neurons following transient ischemia.

Original languageEnglish
Pages (from-to)78-85
Number of pages8
JournalBrain Research
Volume1217
DOIs
Publication statusPublished - 27-06-2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Localization and spatiotemporal expression of IDO following transient forebrain ischemia in gerbils'. Together they form a unique fingerprint.

Cite this