TY - JOUR
T1 - Long-term surgical outcome and biological prognostic factors in patients with skull base meningiomas
T2 - Clinical article
AU - Ohba, Shigeo
AU - Kobayashi, Masahito
AU - Horiguchi, Takashi
AU - Onozuka, Satoshi
AU - Yoshida, Kazunari
AU - Ohira, Takayuki
AU - Kawase, Takeshi
PY - 2011/5
Y1 - 2011/5
N2 - Object. Although gross-total resection (GTR) is a preferable treatment for skull base meningiomas, subtotal resection (STR) with or without radiation therapy can be considered as an alternative treatment for patients at considerable surgical risk. The long-term prognosis of such patients might be related to the biological activity of the tumor. This study examined predictors of progression-free survival (PFS) and sought to determine the optimal treatment strategies, focusing on the pathobiological findings of skull base meningiomas. Methods. This study included 281 patients with skull base meningiomas (mean follow-up period 88.4 months). Risk factors for tumor progression were examined using a multivariate analysis. The PFS and overall survival (OS) rates were evaluated using the Kaplan-Meier method. The functional outcomes of the patients were measured using the Karnofsky Performance Scale (KPS). Results. The 10-year PFS and OS rates were 66.4% and 97.4%, respectively. Overall, 83.3% of patients achieved a favorable outcome, that is, an improved or unchanged KPS score. The extent of resection, additional radiotherapy, histological grade, MIB-1 index, and p53-positive rate were significantly associated with PFS. The PFS of patients undergoing STR without radiation therapy was significantly shorter than that of either those undergoing STR with radiation therapy or GTR, while no statistical difference was observed between the latter 2 groups. Among the patients undergoing STR with pathobiological risk factors (histological grade, MIB-1 index, and p53-positive rate), the PFS of the patients who received radiation therapy was better than that of those who did not receive radiation therapy. Among the patients undergoing STR without such risk factors, the PFS was not significantly different between patients who received radiation therapy and those who did not. Conclusions. For patients with skull base meningiomas, a GTR is desirable and additional radiation therapy after STR may contribute to a longer PFS. Additional radiation therapy should be recommended, especially for patients with pathobiological risk factors, but not necessarily for those without such risks.
AB - Object. Although gross-total resection (GTR) is a preferable treatment for skull base meningiomas, subtotal resection (STR) with or without radiation therapy can be considered as an alternative treatment for patients at considerable surgical risk. The long-term prognosis of such patients might be related to the biological activity of the tumor. This study examined predictors of progression-free survival (PFS) and sought to determine the optimal treatment strategies, focusing on the pathobiological findings of skull base meningiomas. Methods. This study included 281 patients with skull base meningiomas (mean follow-up period 88.4 months). Risk factors for tumor progression were examined using a multivariate analysis. The PFS and overall survival (OS) rates were evaluated using the Kaplan-Meier method. The functional outcomes of the patients were measured using the Karnofsky Performance Scale (KPS). Results. The 10-year PFS and OS rates were 66.4% and 97.4%, respectively. Overall, 83.3% of patients achieved a favorable outcome, that is, an improved or unchanged KPS score. The extent of resection, additional radiotherapy, histological grade, MIB-1 index, and p53-positive rate were significantly associated with PFS. The PFS of patients undergoing STR without radiation therapy was significantly shorter than that of either those undergoing STR with radiation therapy or GTR, while no statistical difference was observed between the latter 2 groups. Among the patients undergoing STR with pathobiological risk factors (histological grade, MIB-1 index, and p53-positive rate), the PFS of the patients who received radiation therapy was better than that of those who did not receive radiation therapy. Among the patients undergoing STR without such risk factors, the PFS was not significantly different between patients who received radiation therapy and those who did not. Conclusions. For patients with skull base meningiomas, a GTR is desirable and additional radiation therapy after STR may contribute to a longer PFS. Additional radiation therapy should be recommended, especially for patients with pathobiological risk factors, but not necessarily for those without such risks.
UR - http://www.scopus.com/inward/record.url?scp=79955653747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955653747&partnerID=8YFLogxK
U2 - 10.3171/2010.11.JNS10701
DO - 10.3171/2010.11.JNS10701
M3 - Article
C2 - 21166572
AN - SCOPUS:79955653747
SN - 0022-3085
VL - 114
SP - 1278
EP - 1287
JO - Journal of neurosurgery
JF - Journal of neurosurgery
IS - 5
ER -