TY - JOUR
T1 - MAGE-D1 regulates expression of depression-like behavior through serotonin transporter ubiquitylation
AU - Mouri, Akihiro
AU - Sasaki, Aya
AU - Watanabe, Ken
AU - Sogawa, Chiharu
AU - Kitayama, Shigeo
AU - Mamiya, Takayoshi
AU - Miyamoto, Yoshiaki
AU - Yamada, Kiyofumi
AU - Noda, Yukihiro
AU - Nabeshima, Toshitaka
PY - 2012/3/28
Y1 - 2012/3/28
N2 - The ubiquitin-proteasome system (UPS) controls the stability of most cellular proteins. The polymorphism of UPS-related genes is associated with major depression disorder, but less is known about the molecule that plays a role in depression by modulating the UPS. Melanoma antigen gene-D1 (MAGE-D1) interacts with RING E3 ubiquitin ligase and is implicated in protein degradation. MAGE-D1 may thus play an important role in the CNS via ubiquitylation. Here, we clarified a novel role of MAGE-D1 in emotional functions, namely its modulation of ubiquitylation to the serotonin transporter (SERT). The MAGE-D1 knock-out and knockdown by small interfering RNA (siRNA) in the prefrontal cortex showed depression-like behavior, such as a decrease in exploratory behavior in both the home cage and novel apparatus, a decrease in social interaction, increased immobility time during forced swimming and tail suspension, and a decrease in sucrose preference without any anxiety, or cognitive or motor dysfunction. Acute and chronic (28 d) administration of sertraline (10 mg/kg) and imipramine (20 mg/kg) reversed all or part of depression-like behavior in knock-out mice. In these mice, the serotonergic function in the prefrontal cortex and hippocampus was hypoactive, accompanied by hyperexpression of SERT attributable to a decrease in ubiquitylation. Furthermore, MAGE-D1 binds to SERT via the necdin homology domain. MAGE-D1 overexpression in cells resulted in a decrease in serotonin uptake activity and the protein level of SERT but an increase in ubiquitylated SERT. Together, the present findings suggest a novel role for MAGE-D1 in depressive behaviors: modulating SERT ubiquitylation.
AB - The ubiquitin-proteasome system (UPS) controls the stability of most cellular proteins. The polymorphism of UPS-related genes is associated with major depression disorder, but less is known about the molecule that plays a role in depression by modulating the UPS. Melanoma antigen gene-D1 (MAGE-D1) interacts with RING E3 ubiquitin ligase and is implicated in protein degradation. MAGE-D1 may thus play an important role in the CNS via ubiquitylation. Here, we clarified a novel role of MAGE-D1 in emotional functions, namely its modulation of ubiquitylation to the serotonin transporter (SERT). The MAGE-D1 knock-out and knockdown by small interfering RNA (siRNA) in the prefrontal cortex showed depression-like behavior, such as a decrease in exploratory behavior in both the home cage and novel apparatus, a decrease in social interaction, increased immobility time during forced swimming and tail suspension, and a decrease in sucrose preference without any anxiety, or cognitive or motor dysfunction. Acute and chronic (28 d) administration of sertraline (10 mg/kg) and imipramine (20 mg/kg) reversed all or part of depression-like behavior in knock-out mice. In these mice, the serotonergic function in the prefrontal cortex and hippocampus was hypoactive, accompanied by hyperexpression of SERT attributable to a decrease in ubiquitylation. Furthermore, MAGE-D1 binds to SERT via the necdin homology domain. MAGE-D1 overexpression in cells resulted in a decrease in serotonin uptake activity and the protein level of SERT but an increase in ubiquitylated SERT. Together, the present findings suggest a novel role for MAGE-D1 in depressive behaviors: modulating SERT ubiquitylation.
UR - http://www.scopus.com/inward/record.url?scp=84859072581&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859072581&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.6458-11.2012
DO - 10.1523/JNEUROSCI.6458-11.2012
M3 - Article
C2 - 22457503
AN - SCOPUS:84859072581
SN - 0270-6474
VL - 32
SP - 4562
EP - 4580
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 13
ER -