Maintaince of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK

Kumi Kawai, Takayuki Itoh, Aki Itoh, Makoto Horiuchi, Kouji Wakayama, Peter Bannerman, James Y. Garbern, David Pleasure, Tullia Lindsten

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


Highly purified oligodendroglial lineage cells from mice lacking functional bax and bak genes were resistant to apoptosis after in-vitro differentiation, indicating an essential role of the intrinsic apoptotic pathway in apoptosis of oligodendrocytes in the absence of neurons (axons) and other glial cells. These mice therefore provide a valuable tool with which to evaluate the significance of the intrinsic apoptotic pathway in regulating the population sizes of oligodendrocytes and oligodendroglial progenitor cells. Quantitative analysis of the optic nerves and the dorsal columns of the spinal cord revealed that the absolute numbers of mature oligodendrocytes immunolabeled for aspartoacylase and adult glial progenitor cells expressing NG2 chondroitin sulfate proteoglycan were increased in both white matter tracts of adult bax/bak-deficient mice and, to a lesser extent, bax-deficient mice, except that there was no increase in NG2-positive progenitor cells in the dorsal columns of these strains of mutant mice. These increases in mature oligodendrocytes and progenitor cells in bax/bak-deficient mice were unexpectedly proportional to increases in numbers of axons in these white matter tracts, thus retaining the oligodendroglial lineage to axon ratios of at most 1.3-fold of the physiological numbers. This is in contrast to the prominent expansion in numbers of neural precursor cells in the subventricular zones of these adult mutant mice. Our study indicates that homeostatic control of cell number is different for progenitors of the oligodendroglial and neuronal lineages. Furthermore, regulatory mechanism(s) operating in addition to apoptotic elimination through the intrinsic pathway, appear to prevent the overproduction of highly mitotic oligodendroglial progenitor cells.

Original languageEnglish
Pages (from-to)2030-2041
Number of pages12
JournalEuropean Journal of Neuroscience
Issue number11
Publication statusPublished - 12-2009

All Science Journal Classification (ASJC) codes

  • General Neuroscience


Dive into the research topics of 'Maintaince of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK'. Together they form a unique fingerprint.

Cite this