TY - JOUR
T1 - Marked Disparity in Regional and Transmural Cardiac Mechanics in the Athlete's Heart
AU - Stewart, Glenn M.
AU - Chan, Jonathan
AU - Kane, Garvan C.
AU - Johnson, Bruce D.
AU - Balmain, Bryce N.
AU - Yamada, Akira
AU - Shiino, Kenji
AU - Haseler, Luke J.
AU - Sabapathy, Surendran
N1 - Publisher Copyright:
© Lippincott Williams & Wilkins.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Introduction Regional heterogeneity of the human heart plays an important role in left ventricular (LV) and right ventricular (RV) function and may contribute to enhanced myocardial efficiency in the athlete's heart. Purpose This study comprehensively characterized regional and transmural myocardial tissue deformation (strain) in recreationally active (RA) and endurance-trained (ET) men to determine if regional nonuniformity evolves alongside morphological adaptations associated with endurance training. Methods Echocardiography was used to measure LV and RV global, regional (apical, mid, basal) and transmural (endocardial, epicardial) longitudinal strain in 30 endurance-trained (ET) (age, 31 ± 2 yr; body mass index, 23.1 ± 0.5 kg·m-2; V˙O2peak, 60.2 ± 6.5 mL·kg-1·min-1) and 30 RA (age: 29 ± 2 yr; body mass index, 23.4 ± 0.4 kg·m-2; V˙O2peak: 42.6 ± 4.6 mL·kg-1·min-1). Nonuniformity was characterized using apex-to-base and transmural (endocardial-to-epicardial) strain gradients. Results Global longitudinal strain was similar in ET and RA in the left (-17.4% ± 0.4% vs -17.8% ± 0.5%, P = 0.662) and right ventricle (-25.8% ± 0.8% vs 26.4% ± 1.0%, P = 0.717). The apex-to-base strain gradient was greater in ET than RA in the left (-6.5% ± 0.7% vs -2.7% ± 0.8%, P = 0.001) and right ventricle (-9.6% ± 1.8% vs -3.0% ± 1.6%, P = 0.010). The LV transmural strain gradient was greater than RV in both groups, but similar in ET and RA (-4.7% ± 0.2% vs -4.7% ± 0.2%, P = 0.850), whereas RV transmural strain gradient was greater in ET than RA (-3.4% ± 0.3% vs -1.6% ± 0.4%, P = 0.003). RV apex-to-base and transmural strain gradients correlated with RV end-diastolic area (R = 0.536 & 0.555, respectively, P < 0.01) and V˙O2peak (R = 0.415 & 0.677, respectively, P < 0.01). Conclusions Transmural nonuniformity is more pronounced in the left ventricle than the RV free wall; however, RV functional nonuniformity develops markedly after endurance training. Differences in myocardial architecture and exercise-induced wall stress in the left and right ventricles are possible explanations for the marked functional nonuniformity throughout the myocardium and in response to endurance exercise training.
AB - Introduction Regional heterogeneity of the human heart plays an important role in left ventricular (LV) and right ventricular (RV) function and may contribute to enhanced myocardial efficiency in the athlete's heart. Purpose This study comprehensively characterized regional and transmural myocardial tissue deformation (strain) in recreationally active (RA) and endurance-trained (ET) men to determine if regional nonuniformity evolves alongside morphological adaptations associated with endurance training. Methods Echocardiography was used to measure LV and RV global, regional (apical, mid, basal) and transmural (endocardial, epicardial) longitudinal strain in 30 endurance-trained (ET) (age, 31 ± 2 yr; body mass index, 23.1 ± 0.5 kg·m-2; V˙O2peak, 60.2 ± 6.5 mL·kg-1·min-1) and 30 RA (age: 29 ± 2 yr; body mass index, 23.4 ± 0.4 kg·m-2; V˙O2peak: 42.6 ± 4.6 mL·kg-1·min-1). Nonuniformity was characterized using apex-to-base and transmural (endocardial-to-epicardial) strain gradients. Results Global longitudinal strain was similar in ET and RA in the left (-17.4% ± 0.4% vs -17.8% ± 0.5%, P = 0.662) and right ventricle (-25.8% ± 0.8% vs 26.4% ± 1.0%, P = 0.717). The apex-to-base strain gradient was greater in ET than RA in the left (-6.5% ± 0.7% vs -2.7% ± 0.8%, P = 0.001) and right ventricle (-9.6% ± 1.8% vs -3.0% ± 1.6%, P = 0.010). The LV transmural strain gradient was greater than RV in both groups, but similar in ET and RA (-4.7% ± 0.2% vs -4.7% ± 0.2%, P = 0.850), whereas RV transmural strain gradient was greater in ET than RA (-3.4% ± 0.3% vs -1.6% ± 0.4%, P = 0.003). RV apex-to-base and transmural strain gradients correlated with RV end-diastolic area (R = 0.536 & 0.555, respectively, P < 0.01) and V˙O2peak (R = 0.415 & 0.677, respectively, P < 0.01). Conclusions Transmural nonuniformity is more pronounced in the left ventricle than the RV free wall; however, RV functional nonuniformity develops markedly after endurance training. Differences in myocardial architecture and exercise-induced wall stress in the left and right ventricles are possible explanations for the marked functional nonuniformity throughout the myocardium and in response to endurance exercise training.
UR - http://www.scopus.com/inward/record.url?scp=85090298835&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090298835&partnerID=8YFLogxK
U2 - 10.1249/MSS.0000000000002336
DO - 10.1249/MSS.0000000000002336
M3 - Article
C2 - 32175971
AN - SCOPUS:85090298835
SN - 0195-9131
VL - 52
SP - 1908
EP - 1914
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 9
ER -