TY - JOUR
T1 - Measurement Conditions of End-Diastolic Ratio of Common Carotid Arteries Alter Diagnostic Ability for Large Artery Intracranial Occlusive Disease
AU - Tanaka, Koji
AU - Matsumoto, Shoji
AU - Murai, Hiroyuki
AU - Yamasaki, Ryo
AU - Kira, Jun ichi
N1 - Publisher Copyright:
© 2017 National Stroke Association
PY - 2017/10
Y1 - 2017/10
N2 - Background End-diastolic ratio, calculated by the side-to-side ratio of end-diastolic flow velocities of the common carotid arteries, is an indicator for large artery intracranial occlusive disease. However, the diagnostic ability of end-diastolic ratios derived from different measurement conditions is unclear. Methods End-diastolic ratios were measured twice by single carotid duplex ultrasonography. End-diastolic ratio1st was calculated from separate end-diastolic flow velocities measured during routine assessment. End-diastolic ratio2nd was calculated almost simultaneously without head rotation. For each end-diastolic ratio, the measurement conditions and prediction ability for occlusions of the internal carotid artery or proximal portion of the middle cerebral artery using an established cutoff of 1.4 or greater were compared. Results Two hundred thirty-three patients (147 men, median 67 years) were registered, with available intracranial artery information in 158 patients (67.8%) and occlusions detected in 7 patients (4.4%). End-diastolic ratio1st was significantly higher than end-diastolic ratio2nd (median 1.21 versus 1.08, P <.001). Compared with end-diastolic ratio1st, end-diastolic ratio2nd had a significantly shorter time interval (median 709 versus 28 seconds, P <.001) and smaller pulse rate difference (1.54 ± 5.10 versus.25 ± 4.63 beats per minute, P =.004). To predict occlusions, the sensitivity, specificity, and overall accuracy for end-diastolic ratio1st of 1.4 or greater were 85.7%, 70.9%, and 71.5%, respectively, and for end-diastolic ratio2nd of 1.4 or greater were 85.7%, 98.0%, and 97.5%, respectively. End-diastolic ratio2nd had better specificity and overall accuracy than end-diastolic ratio1st (P <.001). Conclusions End-diastolic ratio varies with measurement conditions. Combined end-diastolic flow velocities measurement may improve diagnostic ability for large artery intracranial occlusive disease.
AB - Background End-diastolic ratio, calculated by the side-to-side ratio of end-diastolic flow velocities of the common carotid arteries, is an indicator for large artery intracranial occlusive disease. However, the diagnostic ability of end-diastolic ratios derived from different measurement conditions is unclear. Methods End-diastolic ratios were measured twice by single carotid duplex ultrasonography. End-diastolic ratio1st was calculated from separate end-diastolic flow velocities measured during routine assessment. End-diastolic ratio2nd was calculated almost simultaneously without head rotation. For each end-diastolic ratio, the measurement conditions and prediction ability for occlusions of the internal carotid artery or proximal portion of the middle cerebral artery using an established cutoff of 1.4 or greater were compared. Results Two hundred thirty-three patients (147 men, median 67 years) were registered, with available intracranial artery information in 158 patients (67.8%) and occlusions detected in 7 patients (4.4%). End-diastolic ratio1st was significantly higher than end-diastolic ratio2nd (median 1.21 versus 1.08, P <.001). Compared with end-diastolic ratio1st, end-diastolic ratio2nd had a significantly shorter time interval (median 709 versus 28 seconds, P <.001) and smaller pulse rate difference (1.54 ± 5.10 versus.25 ± 4.63 beats per minute, P =.004). To predict occlusions, the sensitivity, specificity, and overall accuracy for end-diastolic ratio1st of 1.4 or greater were 85.7%, 70.9%, and 71.5%, respectively, and for end-diastolic ratio2nd of 1.4 or greater were 85.7%, 98.0%, and 97.5%, respectively. End-diastolic ratio2nd had better specificity and overall accuracy than end-diastolic ratio1st (P <.001). Conclusions End-diastolic ratio varies with measurement conditions. Combined end-diastolic flow velocities measurement may improve diagnostic ability for large artery intracranial occlusive disease.
UR - http://www.scopus.com/inward/record.url?scp=85021241606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85021241606&partnerID=8YFLogxK
U2 - 10.1016/j.jstrokecerebrovasdis.2017.05.038
DO - 10.1016/j.jstrokecerebrovasdis.2017.05.038
M3 - Article
C2 - 28652062
AN - SCOPUS:85021241606
SN - 1052-3057
VL - 26
SP - 2421
EP - 2426
JO - Journal of Stroke and Cerebrovascular Diseases
JF - Journal of Stroke and Cerebrovascular Diseases
IS - 10
ER -