TY - JOUR
T1 - Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS
AU - Hitomi Collaboration
AU - Aharonian, Felix
AU - Akamatsu, Hiroki
AU - Akimoto, Fumie
AU - Allen, Steven W.
AU - Angelini, Lorella
AU - Audard, Marc
AU - Awaki, Hisamitsu
AU - Axelsson, Magnus
AU - Bamba, Aya
AU - Bautz, Marshall W.
AU - Blandford, Roger
AU - Brenneman, Laura W.
AU - Brown, Gregory V.
AU - Bulbul, Esra
AU - Cackett, Edward M.
AU - Chernyakova, Maria
AU - Chiao, Meng P.
AU - Coppi, Paolo S.
AU - Costantini, Elisa
AU - De Plaa, Jelle
AU - De Vries, Cor P.
AU - Den Herder, Jan Willem
AU - Done, Chris
AU - Dotani, Tadayasu
AU - Ebisawa, Ken
AU - Eckart, Megan E.
AU - Enoto, Teruaki
AU - Ezoe, Yuichiro
AU - Fabian, Andrew C.
AU - Ferrigno, Carlo
AU - Foster, Adam R.
AU - Fujimoto, Ryuichi
AU - Fukazawa, Yasushi
AU - Furukawa, Maki
AU - Furuzawa, Akihiro
AU - Galeazzi, Massimiliano
AU - Gallo, Luigi C.
AU - Gandhi, Poshak
AU - Giustini, Margherita
AU - Goldwurm, Andrea
AU - Gu, Liyi
AU - Guainazzi, Matteo
AU - Haba, Yoshito
AU - Hagino, Kouichi
AU - Hamaguchi, Kenji
AU - Harrus, Ilana M.
AU - Hatsukade, Isamu
AU - Hayashi, Katsuhiro
AU - Hayashi, Takayuki
AU - Hayashida, Kiyoshi
N1 - Publisher Copyright:
© 2018 Oxford University Press. All rights reserved.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Thanks to its high spectral resolution (∼5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus Cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the Fe XXV Heα line (w)-the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor of ∼1.3 in the inner ∼30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape, and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (Fe XXV forbidden, Heβ, Lyα) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS, will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of cluster gas motions.
AB - Thanks to its high spectral resolution (∼5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus Cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the Fe XXV Heα line (w)-the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor of ∼1.3 in the inner ∼30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape, and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (Fe XXV forbidden, Heβ, Lyα) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS, will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of cluster gas motions.
KW - Galaxies: clusters: individual (Perseus Cluster)
KW - Galaxies: clusters: intracluster medium
KW - X-rays: galaxies: clusters
UR - http://www.scopus.com/inward/record.url?scp=85071364535&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071364535&partnerID=8YFLogxK
U2 - 10.1093/pasj/psx127
DO - 10.1093/pasj/psx127
M3 - Article
AN - SCOPUS:85071364535
SN - 0004-6264
VL - 70
JO - Publications of the Astronomical Society of Japan
JF - Publications of the Astronomical Society of Japan
IS - 2
M1 - psx127
ER -