Mechanical simulation study of postoperative displacement of trochanteric fractures using the finite element method

Atsuo Furui, Nobuki Terada, Kazuaki Mito

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Background: Femoral trochanteric fractures are common among older adults. In the reduction of trochanteric fractures, acquiring the support of the anterior cortex at the fracture site on lateral view immediately after surgery is important. However, even if the cortical support is acquired, postoperative displacement due to the loss of this support often occurs. This study aimed to investigate local stress distribution in several trochanteric fracture models and to evaluate risk factors for postoperative displacement using the finite element (FE) method. Methods: Displaced two-fragment fracture models with an angulation deformity at the fracture site and a non-displaced two-fragment fracture model were constructed. The models with an angulation deformity were of two types, one with the proximal fragment directed backward (type A) and the other with the proximal fragment rotated forward from the femoral neck axis (type B). Thereafter, FE models of the femur and a sliding hip screw mounted on a 135° three-hole side-plate were constructed. A 2010-N load was applied to the femoral head, and a 1086-N load was applied to the greater trochanter. Under this condition, the maximum value of the von Mises stress distribution and the amount of displacement of the femoral head vertex in the distal direction were investigated. Results: A larger maximum stress value at the medial femoral neck cortex and a higher amount of displacement in the distal direction were particularly recognized in type A models. These results indicate that microstructural damage was larger in type A models and that type A fracture alignment may be particularly related to fracture collapse and subsequent postoperative displacement. Conclusion: Even if support of the anterior cortex at the fracture site on lateral view is acquired immediately after surgery, caution is necessary for cases in which the proximal fragment is directed backward in the postoperative displacement from the viewpoint of the biomechanics of the FE method.

Original languageEnglish
Article number300
JournalJournal of Orthopaedic Surgery and Research
Volume13
Issue number1
DOIs
Publication statusPublished - 27-11-2018

All Science Journal Classification (ASJC) codes

  • Surgery
  • Orthopedics and Sports Medicine

Fingerprint Dive into the research topics of 'Mechanical simulation study of postoperative displacement of trochanteric fractures using the finite element method'. Together they form a unique fingerprint.

Cite this