TY - JOUR
T1 - Mechanisms of Reduced Susceptibility to Cefiderocol Among Isolates from the CREDIBLE-CR and APEKS-NP Clinical Trials
AU - Nordmann, Patrice
AU - Shields, Ryan K.
AU - Doi, Yohei
AU - Takemura, Miki
AU - Echols, Roger
AU - Matsunaga, Yuko
AU - Yamano, Yoshinori
N1 - Publisher Copyright:
© Patrice Nordmann et al. 2022; Published by Mary Ann Liebert, Inc. 2022.
PY - 2022/4
Y1 - 2022/4
N2 - The objective of this study was to characterize isolates with reduced susceptibility to cefiderocol in patients receiving cefiderocol for nosocomial pneumonia or carbapenem-resistant infections in the Phase 3 APEKS-NP and CREDIBLE-CR studies. Susceptibility testing of isolates was conducted at a central laboratory, and post-treatment changes were evaluated according to available breakpoints for cefiderocol. Whole-genome sequencing and multilocus sequence typing were performed for isolates to confirm their origin and identify mutations. Five (APEKS-NP) and nine (CREDIBLE-CR) isolates demonstrated a ≥ 4-fold minimum inhibitory concentration (MIC) increase compared with genetically related baseline isolates; most remained susceptible to cefiderocol despite the ≥4-fold MIC increase. Mutations in β-lactamases or penicillin-binding protein (PBP) were identified in 4/14 isolates: one Enterobacter cloacae (amino acid [AA] substitution [A313P] in ACT-17); two Acinetobacter baumannii (one PBP3 AA substitution [H370Y], one with OXA-23 substitutions [N85I and P225S]); and one Pseudomonas aeruginosa (PDC-30 [4AA deletion "TPMA"position 316-319]). Cloning experiments using isogenic Escherichia coli strains containing wild-type and those mutant cephalosporinase enzymes show that the mutant enzymes may contribute to decreased susceptibility to cefiderocol. Pharmacokinetic data were available for nine patients, for whom cefiderocol exposures exceeded 100% fT > 4 × MIC. No clear pattern between mutations and development or extent of MIC increases was observed. No mutations were identified in genes related to iron transport, including fiu, cirA, piuA/C, and pirA, among recovered Gram-negative isolates. Clinicaltrials.gov: APEKS-NP: NCT03032380; CREDIBLE-CR: NCT02714595.
AB - The objective of this study was to characterize isolates with reduced susceptibility to cefiderocol in patients receiving cefiderocol for nosocomial pneumonia or carbapenem-resistant infections in the Phase 3 APEKS-NP and CREDIBLE-CR studies. Susceptibility testing of isolates was conducted at a central laboratory, and post-treatment changes were evaluated according to available breakpoints for cefiderocol. Whole-genome sequencing and multilocus sequence typing were performed for isolates to confirm their origin and identify mutations. Five (APEKS-NP) and nine (CREDIBLE-CR) isolates demonstrated a ≥ 4-fold minimum inhibitory concentration (MIC) increase compared with genetically related baseline isolates; most remained susceptible to cefiderocol despite the ≥4-fold MIC increase. Mutations in β-lactamases or penicillin-binding protein (PBP) were identified in 4/14 isolates: one Enterobacter cloacae (amino acid [AA] substitution [A313P] in ACT-17); two Acinetobacter baumannii (one PBP3 AA substitution [H370Y], one with OXA-23 substitutions [N85I and P225S]); and one Pseudomonas aeruginosa (PDC-30 [4AA deletion "TPMA"position 316-319]). Cloning experiments using isogenic Escherichia coli strains containing wild-type and those mutant cephalosporinase enzymes show that the mutant enzymes may contribute to decreased susceptibility to cefiderocol. Pharmacokinetic data were available for nine patients, for whom cefiderocol exposures exceeded 100% fT > 4 × MIC. No clear pattern between mutations and development or extent of MIC increases was observed. No mutations were identified in genes related to iron transport, including fiu, cirA, piuA/C, and pirA, among recovered Gram-negative isolates. Clinicaltrials.gov: APEKS-NP: NCT03032380; CREDIBLE-CR: NCT02714595.
UR - http://www.scopus.com/inward/record.url?scp=85129086984&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129086984&partnerID=8YFLogxK
U2 - 10.1089/mdr.2021.0180
DO - 10.1089/mdr.2021.0180
M3 - Article
C2 - 35076335
AN - SCOPUS:85129086984
SN - 1076-6294
VL - 28
SP - 398
EP - 407
JO - Microbial Drug Resistance
JF - Microbial Drug Resistance
IS - 4
ER -