MicroRNA‑126‑3p suppresses HeLa cell proliferation, migration and invasion, and increases apoptosis via the PI3K/PDK1/AKT pathway

Ryoko Ichikawa, Rie Kawasaki, Aya Iwata, Sayaka Otani, Eiji Nishio, Hiroyuki Nomura, Takuma Fujii

Research output: Contribution to journalArticle

Abstract

We previously reported that relative to normal cervical mucus, microRNA 126-3p (miR-126-3p) is present in significantly greater amounts in the cervical mucus of patients with overt cervical cancer or precursor lesions. Here, we investigated the effects of enforced miR-126-3p expression in the cervical cancer cell line, HeLa, on proliferation, migration, invasion, apoptosis and protein expression. We transfected HeLa cells with miR-126-3p miRNA and found that proliferation, migration and invasion by cell counting, wound healing, cell migration and invasion assay were significantly reduced in these cells relative to those transfected with a negative control mimic. The levels of phosphoinositide 3 kinase (PI3K), phosphorylated 3-phosphoinositide-dependent protein kinase-1 (p-PDK1) and p-AKT proteins were lower in the miR-126-3p-transfected cells. Phosphorylated 70S6K (p-p70S6K), phosphorylated glycogen synthase kinase 3β (p-GSK3β), phosphorylated S6K (p-S6K), cyclin D1, phosphorylated p21-activated kinase 1 (p-PAK1), Rho associated coiled-coil containing protein kinase 1 (ROCK1), myotonic dystrophy-related CDC42-binding kinases α (MRCKα) and phospholipase C γ1 (p-PLCγ1) were also downregulated. This suggests that downstream effectors of the PI3K/PDK1/AKT pathway are targets for inhibition by miR-126-3p. In contrast, apoptotic-related proteins including the BCL-2-associated agonist of cell death (Bad), B-cell lymphoma-extra-large (Bcl-xL) and BCL-2-associated X (Bax), were all upregulated by miR-126-3p, resulting in increased caspase 3/7 activity and apoptosis. Thus, enforced expression of miR-126-3p inhibited cell migration and invasion and also induced apoptosis by regulating the PI3K/PDK1/AKT pathway in HeLa cells. Hence, high levels of miR-126-3p may inhibit cervical carcinogenesis, and targeting the PI3K/PDK1/AKT pathway via miR-126-3p could represent a new approach for treating patients with cervical cancer.

Original languageEnglish
Pages (from-to)1300-1308
Number of pages9
JournalOncology reports
Volume43
Issue number4
DOIs
Publication statusPublished - 01-01-2020

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this