TY - JOUR
T1 - Molecular Imaging of Apoptosis in Ischemia Reperfusion Injury With Radiolabeled Duramycin Targeting Phosphatidylethanolamine
T2 - Effective Target Uptake and Reduced Nontarget Organ Radiation Burden
AU - Kawai, Hideki
AU - Chaudhry, Farhan
AU - Shekhar, Aditya
AU - Petrov, Artiom
AU - Nakahara, Takehiro
AU - Tanimoto, Takashi
AU - Kim, Dongbin
AU - Chen, Jiqiu
AU - Lebeche, Djamel
AU - Blankenberg, Francis G.
AU - Pak, Koon Y.
AU - Kolodgie, Frank D.
AU - Virmani, Renu
AU - Sengupta, Partho
AU - Narula, Navneet
AU - Hajjar, Roger J.
AU - Strauss, Harry W.
AU - Narula, Jagat
N1 - Publisher Copyright:
© 2018 American College of Cardiology Foundation
PY - 2018/12
Y1 - 2018/12
N2 - Objectives: The purpose of this study was to evaluate the feasibility of imaging apoptosis in experimental ischemia-reperfusion model by technetium-99m (99mTc)-labeled Duramycin, and compare it to an established tracer, 99mTc-labeled Annexin-V, which has a relative disadvantage of high radiation burden to nontarget organs. Background: During apoptosis, the cell membrane phospholipids-phosphatidylserine (PS) and phosphatidylethanolamine (PE) are exposed and can be targeted by Annexin-V and Duramycin, respectively, for in vivo imaging. Identification of a reversible cell death process should permit therapeutic intervention to help reduce myocyte loss and left ventricle dysfunction. Methods: In a 40-min left coronary artery ischemia-reperfusion model in 17 rabbits, 7 mCi of 99mTc-labeled Duramycin (n = 10), 99mTc-linear Duramycin (a negative tracer control; n = 3), or 99mTc-Annexin-V (a positive tracer-control; n = 4) were intravenously administered 30 min after reperfusion. Of the 10 Duramycin group animals, 4 animals were treated with an antiapoptotic agent, minocycline at the time of reperfusion. In vivo and ex vivo micro–single-photon emission computed tomography (μSPECT) and micro-computed tomography (μCT) imaging was performed 3 h after reperfusion, followed by quantitative assessment of tracer uptake and pathological characterization. Fluorescent Duramycin and Annexin-V were injected in 4 rats to visualize colocalization in infarct areas in a 40-min left coronary artery occlusion and 30-min reperfusion model. Results: Intense uptake of Duramycin and Annexin-V was observed in the apical (infarcted) areas. The percent injected dose per gram uptake of Duramycin in apical region (0.751 ± 0.262%) was significantly higher than remote area in same animals (0.045 ± 0.029%; p < 0.01). Duramycin uptake was insignificantly lower than Annexin-V uptake (1.23 ± 0.304%; p > 0.01) but demonstrated substantially lower radiation burden to kidneys (0.358 ± 0.210% vs. 1.58 ± 0.316%, respectively; p < 0.001). Fluorescence studies with Duramycin and Annexin V showed colocalization in infarct areas. Minocycline treatment substantially resolved Duramycin uptake (0.354% ± 0.0624%; p < 0.01). Conclusions: Duramycin is similarly effective in imaging apoptotic cell death as Annexin-V with lower nontarget organ radiation. Clinical feasibility of apoptosis imaging with a PE-seeking tracer should be tested.
AB - Objectives: The purpose of this study was to evaluate the feasibility of imaging apoptosis in experimental ischemia-reperfusion model by technetium-99m (99mTc)-labeled Duramycin, and compare it to an established tracer, 99mTc-labeled Annexin-V, which has a relative disadvantage of high radiation burden to nontarget organs. Background: During apoptosis, the cell membrane phospholipids-phosphatidylserine (PS) and phosphatidylethanolamine (PE) are exposed and can be targeted by Annexin-V and Duramycin, respectively, for in vivo imaging. Identification of a reversible cell death process should permit therapeutic intervention to help reduce myocyte loss and left ventricle dysfunction. Methods: In a 40-min left coronary artery ischemia-reperfusion model in 17 rabbits, 7 mCi of 99mTc-labeled Duramycin (n = 10), 99mTc-linear Duramycin (a negative tracer control; n = 3), or 99mTc-Annexin-V (a positive tracer-control; n = 4) were intravenously administered 30 min after reperfusion. Of the 10 Duramycin group animals, 4 animals were treated with an antiapoptotic agent, minocycline at the time of reperfusion. In vivo and ex vivo micro–single-photon emission computed tomography (μSPECT) and micro-computed tomography (μCT) imaging was performed 3 h after reperfusion, followed by quantitative assessment of tracer uptake and pathological characterization. Fluorescent Duramycin and Annexin-V were injected in 4 rats to visualize colocalization in infarct areas in a 40-min left coronary artery occlusion and 30-min reperfusion model. Results: Intense uptake of Duramycin and Annexin-V was observed in the apical (infarcted) areas. The percent injected dose per gram uptake of Duramycin in apical region (0.751 ± 0.262%) was significantly higher than remote area in same animals (0.045 ± 0.029%; p < 0.01). Duramycin uptake was insignificantly lower than Annexin-V uptake (1.23 ± 0.304%; p > 0.01) but demonstrated substantially lower radiation burden to kidneys (0.358 ± 0.210% vs. 1.58 ± 0.316%, respectively; p < 0.001). Fluorescence studies with Duramycin and Annexin V showed colocalization in infarct areas. Minocycline treatment substantially resolved Duramycin uptake (0.354% ± 0.0624%; p < 0.01). Conclusions: Duramycin is similarly effective in imaging apoptotic cell death as Annexin-V with lower nontarget organ radiation. Clinical feasibility of apoptosis imaging with a PE-seeking tracer should be tested.
UR - http://www.scopus.com/inward/record.url?scp=85042006636&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042006636&partnerID=8YFLogxK
U2 - 10.1016/j.jcmg.2017.11.037
DO - 10.1016/j.jcmg.2017.11.037
M3 - Article
C2 - 29454770
AN - SCOPUS:85042006636
SN - 1936-878X
VL - 11
SP - 1823
EP - 1833
JO - JACC: Cardiovascular Imaging
JF - JACC: Cardiovascular Imaging
IS - 12
ER -