Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways

Satoshi Nonomura, Kayo Nishizawa, Yutaka Sakai, Yasuo Kawaguchi, Shigeki Kato, Motokazu Uchigashima, Masahiko Watanabe, Ko Yamanaka, Kazuki Enomoto, Satomi Chiken, Hiromi Sano, Shogo Soma, Junichi Yoshida, Kazuyuki Samejima, Masaaki Ogawa, Kazuto Kobayashi, Atsushi Nambu, Yoshikazu Isomura, Minoru Kimura

Research output: Contribution to journalArticlepeer-review

104 Citations (Scopus)

Abstract

The basal ganglia play key roles in adaptive behaviors guided by reward and punishment. However, despite accumulating knowledge, few studies have tested how heterogeneous signals in the basal ganglia are organized and coordinated for goal-directed behavior. In this study, we investigated neuronal signals of the direct and indirect pathways of the basal ganglia as rats performed a lever push/pull task for a probabilistic reward. In the dorsomedial striatum, we found that optogenetically and electrophysiologically identified direct pathway neurons encoded reward outcomes, whereas indirect pathway neurons encoded no-reward outcome and next-action selection. Outcome coding occurred in association with the chosen action. In support of pathway-specific neuronal coding, light activation induced a bias on repeat selection of the same action in the direct pathway, but on switch selection in the indirect pathway. Our data reveal the mechanisms underlying monitoring and updating of action selection for goal-directed behavior through basal ganglia circuits. In rats performing reward-oriented action selection, we demonstrate that striatal direct pathway neurons encode chosen action-associated reward and indirect pathway neurons encode no-reward outcomes and next selection. Activation of direct or indirect pathways biases toward repeating or switching actions, respectively.

Original languageEnglish
Pages (from-to)1302-1314.e5
JournalNeuron
Volume99
Issue number6
DOIs
Publication statusPublished - 19-09-2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways'. Together they form a unique fingerprint.

Cite this