TY - JOUR
T1 - Monitoring the glycosylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate-type glutamate receptors using specific antibodies reveals a novel regulatory mechanism of N-glycosylation occupancy by molecular chaperones in mice
AU - Midorikawa, Ryosuke
AU - Takakura, Daisuke
AU - Morise, Jyoji
AU - Wakazono, Yoshihiko
AU - Kawasaki, Nana
AU - Oka, Shogo
AU - Takamiya, Kogo
N1 - Publisher Copyright:
© 2020 International Society for Neurochemistry
PY - 2020/6/1
Y1 - 2020/6/1
N2 - In the mammalian nervous system, protein N-glycosylation plays an important role in neuronal physiology. In this study, we performed a comprehensive N-glycosylation analysis of mouse GluA1, one of the major subunits of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate type glutamate receptor, which possesses six potential N-glycosylation sites in the N-terminal domain. By mass spectrometry-based analysis, we identified the N-glycoforms and semiquantitatively determined the site-specific N-glycosylation occupancy of GluA1. In addition, only the N401-glycosylation site demonstrated incomplete N-glycosylation occupancy. Therefore, we generated a peptide antibody that specifically detects the N401-glycan-free form to precisely quantify N401-glycosylation occupancy. Using this antibody, we clarified that N401 occupancy varies between cell types and increases in an age-dependent manner in mouse forebrains. To address the regulatory mechanism of N401-glycosylation, binding proteins of GluA1 around the N401 site were screened. HSP70 family proteins, including Bip, were identified as candidates. Bip has been known as a molecular chaperone that plays a key role in protein folding in the ER (endoplasmic reticulum). To examine the involvement of Bip in N401-glycosylation, the effect of Bip over-expression on N401 occupancy was evaluated in HEK293T cells, and the results demonstrated Bip increases the N401 glycan-free form by mediating selective prolongation of its protein half-life. Taken together, we propose that the N401-glycosite of GluA1 receives a unique control of modification, and we also propose a novel N-glycosylation occupancy regulatory mechanism by Bip that might be associated with α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors function in the brain. (Figure presented.).
AB - In the mammalian nervous system, protein N-glycosylation plays an important role in neuronal physiology. In this study, we performed a comprehensive N-glycosylation analysis of mouse GluA1, one of the major subunits of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate type glutamate receptor, which possesses six potential N-glycosylation sites in the N-terminal domain. By mass spectrometry-based analysis, we identified the N-glycoforms and semiquantitatively determined the site-specific N-glycosylation occupancy of GluA1. In addition, only the N401-glycosylation site demonstrated incomplete N-glycosylation occupancy. Therefore, we generated a peptide antibody that specifically detects the N401-glycan-free form to precisely quantify N401-glycosylation occupancy. Using this antibody, we clarified that N401 occupancy varies between cell types and increases in an age-dependent manner in mouse forebrains. To address the regulatory mechanism of N401-glycosylation, binding proteins of GluA1 around the N401 site were screened. HSP70 family proteins, including Bip, were identified as candidates. Bip has been known as a molecular chaperone that plays a key role in protein folding in the ER (endoplasmic reticulum). To examine the involvement of Bip in N401-glycosylation, the effect of Bip over-expression on N401 occupancy was evaluated in HEK293T cells, and the results demonstrated Bip increases the N401 glycan-free form by mediating selective prolongation of its protein half-life. Taken together, we propose that the N401-glycosite of GluA1 receives a unique control of modification, and we also propose a novel N-glycosylation occupancy regulatory mechanism by Bip that might be associated with α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors function in the brain. (Figure presented.).
KW - AMPA
KW - Bip
KW - N-glycosylation
KW - glutamate receptor
KW - molecular chaperone
UR - http://www.scopus.com/inward/record.url?scp=85079182020&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079182020&partnerID=8YFLogxK
U2 - 10.1111/jnc.14964
DO - 10.1111/jnc.14964
M3 - Article
C2 - 31958346
AN - SCOPUS:85079182020
SN - 0022-3042
VL - 153
SP - 567
EP - 585
JO - Journal of neurochemistry
JF - Journal of neurochemistry
IS - 5
ER -