Movement of the eustachian tube during sniffing in patients with patulous eustachian tube: Evaluation using a 320-row area detector CT scanner

Satoshi Yoshioka, Kensei Naito, Naoko Fujii, Kazuhiro Katada

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

OBJECTIVE: The Eustachian tube is difficult to evaluate because it is located deep in the head. However, the introduction of 320-row area detector CT has made it possible to evaluate this region. In the present study, movement of the Eustachian tube during sniffing was visualized using area detector CT in patients with patulous Eustachian tube. METHODS: Four patients with patulous Eustachian tube were examined using an area detector CT scanner (Aquilion ONE, Toshiba). This scanner supports 320-row scanning of 0.5-mm slices at up to 0.275 s/rot., eliminating temporal mismatch between various parts of the acquired images and permitting 4-dimensional CT (4DCT) images to be obtained by continuous scanning. The scan conditions were 120 kV, 120 to 150 mA, 0.5 mm × 280 to 320 slices, and 0.35 seconds per rotation × 9 rotations. The patient was seated on a reclining chair tilted to 45 degrees and was instructed to sniff during continuous scanning. Images of the Eustachian tube were generated at 0.1-second intervals. CONCLUSION: At the start of sniffing, the cartilaginous portion of the Eustachian tube closed from the isthmus toward the pharynx. The starting point differed from patient to patient. In patients with patulous Eustachian tube, sniffing (an unconscious habit that helps to relieve ear discomfort) is an important factor in the development of middle ear diseases. We have successfully depicted this event for the first time, demonstrating various patterns of Eustachian tube closure during sniffing in patients with patulous Eustachian tube. This method may be useful for evaluating Eustachian tube dysfunction.

Original languageEnglish
Pages (from-to)877-883
Number of pages7
JournalOtology and Neurotology
Volume34
Issue number5
DOIs
Publication statusPublished - 01-07-2013

All Science Journal Classification (ASJC) codes

  • Otorhinolaryngology
  • Sensory Systems
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Movement of the eustachian tube during sniffing in patients with patulous eustachian tube: Evaluation using a 320-row area detector CT scanner'. Together they form a unique fingerprint.

Cite this