Mutations in COQ2 in familial and sporadic multiple-system atrophy the multiple-system atrophy research collaboration

Jun Mitsui, Takashi Matsukawa, Hiroyuki Ishiura, Yoko Fukuda, Yaeko Ichikawa, Hidetoshi Date, Budrul Ahsan, Yasuo Nakahara, Yoshio Momose, Yuji Takahashi, Atsushi Iwata, Jun Goto, Yorihiro Yamamoto, Makiko Komata, Katsuhiko Shirahige, Kenju Hara, Akiyoshi Kakita, Mitsunori Yamada, Hitoshi Takahashi, Osamu OnoderaMasatoyo Nishizawa, Hiroshi Takashima, Ryozo Kuwano, Hirohisa Watanabe, Mizuki Ito, Gen Sobue, Hiroyuki Soma, Ichiro Yabe, Hidenao Sasaki, Masashi Aoki, Kinya Ishikawa, Hidehiro Mizusawa, Kazuaki Kanai, Takamichi Hattori, Satoshi Kuwabara, Kimihito Arai, Shigeru Koyano, Yoshiyuki Kuroiwa, Kazuko Hasegawa, Tatsuhiko Yuasa, Kenichi Yasui, Kenji Nakashima, Hijiri Ito, Yuishin Izumi, Ryuji Kaji, Takeo Kato, Susumu Kusunoki, Yasushi Osaki, Masahiro Horiuchi, Tomoyoshi Kondo, Shigeo Murayama, Nobutaka Hattori, Mitsutoshi Yamamoto, Miho Murata, Wataru Satake, Tatsushi Toda, Alexandra Dürr, Alexis Brice, Alessandro Filla, Thomas Klockgether, Ullrich Wallner, Garth Nicholson, Sid Gilman, Clifford W. Shults, Caroline M. Tanner, Walter A. Kukull, Virginia M.Y. Lee, Eliezer Masliah, Phillip A. Low, Paola Sandroni, John Q. Trojanowski, Laurie Ozelius, Tatiana Foroud, Shoji Tsuji

Research output: Contribution to journalArticlepeer-review

279 Citations (Scopus)

Abstract

BACKGROUND: Multiple-system atrophy is an intractable neurodegenerative disease characterized by autonomic failure in addition to various combinations of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. Although multiple-system atrophy is widely considered to be a nongenetic disorder, we previously identified multiplex families with this disease, which indicates the involvement of genetic components. METHODS: In combination with linkage analysis, we performed whole-genome sequencing of a sample obtained from a member of a multiplex family in whom multiple-system atrophy had been diagnosed on autopsy. We also performed mutational analysis of samples from members of five other multiplex families and from a Japanese series (363 patients and two sets of controls, one of 520 persons and one of 2383 persons), a European series (223 patients and 315 controls), and a North American series (172 patients and 294 controls). On the basis of these analyses, we used a yeast complementation assay and measured enzyme activity of parahydroxybenzoate-polyprenyl transferase. This enzyme is encoded by the gene COQ2 and is essential for the biosynthesis of coenzyme Q10. Levels of coenzyme Q10 in lymphoblastoid cells and brain tissue were measured on high-performance liquid chromatography. RESULTS: We identified a homozygous mutation (M78V-V343A/M78V-V343A) and compound heterozygous mutations (R337X/V343A) in COQ2 in two multiplex families. Furthermore, we found that a common variant (V343A) and multiple rare variants in COQ2, all of which are functionally impaired, are associated with sporadic multiple-system atrophy. The V343A variant was exclusively observed in the Japanese population. CONCLUSIONS: Functionally impaired variants of COQ2 were associated with an increased risk of multiple-system atrophy in multiplex families and patients with sporadic disease, providing evidence of a role of impaired COQ2 activities in the pathogenesis of this disease.

Original languageEnglish
Pages (from-to)233-244
Number of pages12
JournalNew England Journal of Medicine
Volume369
Issue number3
DOIs
Publication statusPublished - 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Medicine

Fingerprint

Dive into the research topics of 'Mutations in COQ2 in familial and sporadic multiple-system atrophy the multiple-system atrophy research collaboration'. Together they form a unique fingerprint.

Cite this