Myocardial cell sheet therapy and cardiac function

Jun Fujita, Yuji Itabashi, Tomohisa Seki, Shugo Tohyama, Yuichi Tamura, Motoaki Sano, Keiichi Fukuda

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

Heart failure (HF) is the leading cause of death in developed countries. Regenerative medicine has the potential to drastically improve treatment for advanced HF. Stem cell-based medicine has received attention as a promising candidate therapy over the past decade; however, it has not yet realized this potential in terms of reliability. The cell sheet is an innovative technology for constructing aligned graft cells, and several cell sources have been investigated for making a feasible cell sheet. The most representative thus far is skeletal myoblast, although such cells raise the issue of arrhythmogenicity. Regenerative cardiomyocytes (CMs) derived from pluripotent stem cells (PSCs), such as embryonic stem cells or induced PSCs, are the most promising, because a myocardial cell sheet (MCS) constructed with regenerative CMs can potentially enable contraction recovery and electromechanical coupling with host CMs. The functional outcomes of experimental MCS are reduction of ventricular wall stress and paracrine effects rather than contraction recovery. Several technical obstacles still hamper the clinical application of MCSs, with graft survival the most pivotal issue. Ischemia, apoptosis, inflammation, and immune response can all cause graft cell death, and a stable blood supply to the MCS is critical for successful engraftment. Ventricular tachycardia must also be considered in any myocardial cell therapy, and multiple layering of MCS (>3 layers) is necessary to reconstruct human myocardium. Innervation is also a potential issue. The future application of myocardial cell therapy with MCS for advanced HF depends on resolving these difficulties.

Original languageEnglish
Pages (from-to)H1169-H1182
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume303
Issue number10
DOIs
Publication statusPublished - 15-11-2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Myocardial cell sheet therapy and cardiac function'. Together they form a unique fingerprint.

Cite this