TY - JOUR
T1 - Neurexin-1, a presynaptic adhesion molecule, localizes at the slit diaphragm of the glomerular podocytes in kidneys
AU - Saito, Akira
AU - Miyauchi, Naoko
AU - Hashimoto, Taeko
AU - Karasawa, Tamaki
AU - Han, Gi Dong
AU - Kayaba, Mutsumi
AU - Sumi, Tomoyuki
AU - Tomita, Masayuki
AU - Ikezumi, Yohei
AU - Suzuki, Kenji
AU - Koitabashi, Yasushi
AU - Shimizu, Fujio
AU - Kawachi, Hiroshi
PY - 2011/2
Y1 - 2011/2
N2 - The slit diaphragm connecting the adjacent foot processes of glomerular epithelial cells (podocytes) is the final barrier of the glomerular capillary wall and serves to prevent proteinuria. Podocytes are understood to be terminally differentiated cells and share some common features with neurons. Neurexin is a presynaptic adhesion molecule that plays a role in synaptic differentiation. Although neurexin has been understood to be specifically expressed in neuronal tissues, we found that neurexin was expressed in several organs. Several forms of splice variants of neurexin-1α were detected in the cerebrum, but only one form of neurexin-1α was detected in glomeruli. Immunohistochemical study showed that neurexin restrictedly expressed in the podocytes in kidneys. Dual-labeling analyses showed that neurexin was colocalized with CD2AP, an intracellular component of the slit diaphragm. Immunoprecipitation assay using glomerular lysate showed that neurexin interacted with CD2AP and CASK. These observations indicated that neurexin localized at the slit diaphragm area. The staining intensity of neurexin in podocytes was clearly lowered, and their staining pattern shifted to a more discontinuous patchy pattern in the disease models showing severe proteinuria. The expression and localization of neurexin in these models altered more clearly and rapidly than that of other slit diaphragm components. We propose that neurexin is available as an early diagnostic marker to detect podocyte injury. Neurexin coincided with nephrin, a key molecule of the slit diaphragm detected in a presumptive podocyte of the developing glomeruli and in the glomeruli for which the slit diaphragm is repairing injury. These observations suggest that neurexin is involved in the formation of the slit diaphragm and the maintenance of its function.
AB - The slit diaphragm connecting the adjacent foot processes of glomerular epithelial cells (podocytes) is the final barrier of the glomerular capillary wall and serves to prevent proteinuria. Podocytes are understood to be terminally differentiated cells and share some common features with neurons. Neurexin is a presynaptic adhesion molecule that plays a role in synaptic differentiation. Although neurexin has been understood to be specifically expressed in neuronal tissues, we found that neurexin was expressed in several organs. Several forms of splice variants of neurexin-1α were detected in the cerebrum, but only one form of neurexin-1α was detected in glomeruli. Immunohistochemical study showed that neurexin restrictedly expressed in the podocytes in kidneys. Dual-labeling analyses showed that neurexin was colocalized with CD2AP, an intracellular component of the slit diaphragm. Immunoprecipitation assay using glomerular lysate showed that neurexin interacted with CD2AP and CASK. These observations indicated that neurexin localized at the slit diaphragm area. The staining intensity of neurexin in podocytes was clearly lowered, and their staining pattern shifted to a more discontinuous patchy pattern in the disease models showing severe proteinuria. The expression and localization of neurexin in these models altered more clearly and rapidly than that of other slit diaphragm components. We propose that neurexin is available as an early diagnostic marker to detect podocyte injury. Neurexin coincided with nephrin, a key molecule of the slit diaphragm detected in a presumptive podocyte of the developing glomeruli and in the glomeruli for which the slit diaphragm is repairing injury. These observations suggest that neurexin is involved in the formation of the slit diaphragm and the maintenance of its function.
UR - http://www.scopus.com/inward/record.url?scp=79551533801&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551533801&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00640.2009
DO - 10.1152/ajpregu.00640.2009
M3 - Article
C2 - 21048075
AN - SCOPUS:79551533801
SN - 0363-6119
VL - 300
SP - R340-R348
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 2
ER -