TY - JOUR
T1 - Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET)
T2 - A comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine
AU - Tagawa, Masaaki
AU - Kano, Michiko
AU - Okamura, Nobuyuki
AU - Higuchi, Makoto
AU - Matsuda, Michiaki
AU - Mizuki, Yasuyuki
AU - Arai, Hiroyuki
AU - Iwata, Ren
AU - Fujii, Toshihiko
AU - Komemushi, Sadao
AU - Ido, Tatsuo
AU - Itoh, Masatoshi
AU - Sasaki, Hidetada
AU - Watanabe, Takehiko
AU - Yanai, Kazuhiko
PY - 2001/11
Y1 - 2001/11
N2 - AIMS: Sedation induced by antihistamines is widely recognized to be caused by their penetration through the blood-brain-barrier and the consequent occupation of brain histamine H1-receptors. We previously studied the mechanism of sedation caused by antihistamines using positron emission tomography (PET). Recently, we revealed the nonsedative characteristic of ebastine, a second-generation antihistamine, with cognitive performance tests. In the present study, H1-receptor occupation by ebastine was examined in the human brain using PET. METHODS: Ebastine 10 mg and (+)-chlorpheniramine 2 or 6 mg were orally given to healthy male volunteers. PET scans with [11C]-doxepin, a potent H1-receptor antagonist, were conducted near tmax of respective drugs. Other volunteers in the control group also received PET scans. The binding potential of doxepin (BP = Bmax/Kd) for available brain H1-receptors was imaged on a voxel-by-voxel basis through graphical analysis. By setting regions of interest, the H1-receptor occupancy of drugs was calculated in several H1-receptor rich regions. RESULTS: Brain distribution of radioactivity after ebastine treatment was similar to that without any drugs. However, after the oral administration of 2 mg (+)-chlorpheniramine, the level was lower than after ebastine and nondrug treatments. Graphical analysis followed by statistical parametric mapping (SPM96) revealed that H1-receptor rich regions such as cortices, cingulate gyrus and thalamus were regions where the BPs after ebastine were significantly higher than after (+)-chlorpheniramine (2 mg). H1-receptor occupancies in cortex were approximately 10% by ebastine and > or = 50% by either dose of (+)-chlorpheniramine (95% confidence interval for difference in the mean receptor occupancies: 27%, 54% for 2 mg and 35%, 62% for 6 mg vs ebastine, respectively). Receptor occupancies increased with increasing plasma concentration of (+)-chlorpheniramine, but not with concentration of carebastine, an active metabolite of ebastine. CONCLUSIONS: Ebastine (10 mg orally) causes brain histamine H1-receptor occupation of approximately 10%, consistent with its lower incidence of sedative effect, whereas (+)-chlorpheniramine occupied about 50% of brain H1-receptors even at a low but sedative dose of 2 mg; occupancy of (+)-chlorpheniramine was correlated with plasma (+)-chlorpheniramine concentration.
AB - AIMS: Sedation induced by antihistamines is widely recognized to be caused by their penetration through the blood-brain-barrier and the consequent occupation of brain histamine H1-receptors. We previously studied the mechanism of sedation caused by antihistamines using positron emission tomography (PET). Recently, we revealed the nonsedative characteristic of ebastine, a second-generation antihistamine, with cognitive performance tests. In the present study, H1-receptor occupation by ebastine was examined in the human brain using PET. METHODS: Ebastine 10 mg and (+)-chlorpheniramine 2 or 6 mg were orally given to healthy male volunteers. PET scans with [11C]-doxepin, a potent H1-receptor antagonist, were conducted near tmax of respective drugs. Other volunteers in the control group also received PET scans. The binding potential of doxepin (BP = Bmax/Kd) for available brain H1-receptors was imaged on a voxel-by-voxel basis through graphical analysis. By setting regions of interest, the H1-receptor occupancy of drugs was calculated in several H1-receptor rich regions. RESULTS: Brain distribution of radioactivity after ebastine treatment was similar to that without any drugs. However, after the oral administration of 2 mg (+)-chlorpheniramine, the level was lower than after ebastine and nondrug treatments. Graphical analysis followed by statistical parametric mapping (SPM96) revealed that H1-receptor rich regions such as cortices, cingulate gyrus and thalamus were regions where the BPs after ebastine were significantly higher than after (+)-chlorpheniramine (2 mg). H1-receptor occupancies in cortex were approximately 10% by ebastine and > or = 50% by either dose of (+)-chlorpheniramine (95% confidence interval for difference in the mean receptor occupancies: 27%, 54% for 2 mg and 35%, 62% for 6 mg vs ebastine, respectively). Receptor occupancies increased with increasing plasma concentration of (+)-chlorpheniramine, but not with concentration of carebastine, an active metabolite of ebastine. CONCLUSIONS: Ebastine (10 mg orally) causes brain histamine H1-receptor occupation of approximately 10%, consistent with its lower incidence of sedative effect, whereas (+)-chlorpheniramine occupied about 50% of brain H1-receptors even at a low but sedative dose of 2 mg; occupancy of (+)-chlorpheniramine was correlated with plasma (+)-chlorpheniramine concentration.
UR - http://www.scopus.com/inward/record.url?scp=17944374941&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17944374941&partnerID=8YFLogxK
U2 - 10.1046/j.1365-2125.2001.01471.x
DO - 10.1046/j.1365-2125.2001.01471.x
M3 - Article
C2 - 11736858
AN - SCOPUS:17944374941
SN - 0306-5251
VL - 52
SP - 501
EP - 509
JO - British Journal of Clinical Pharmacology
JF - British Journal of Clinical Pharmacology
IS - 5
ER -