TY - JOUR
T1 - NKX2.2 suppresses self-renewal of glioma-initiating cells
AU - Muraguchi, Teruyuki
AU - Tanaka, Shingo
AU - Yamada, Daisuke
AU - Tamase, Akira
AU - Nakada, Mitsutoshi
AU - Nakamura, Hideo
AU - Hoshii, Takayuki
AU - Ooshio, Takako
AU - Tadokoro, Yuko
AU - Naka, Kazuhito
AU - Ino, Yasushi
AU - Todo, Tomoki
AU - Kuratsu, Jun Ichi
AU - Saya, Hideyuki
AU - Hamada, Jun Ichiro
AU - Hirao, Atsushi
PY - 2011/2/1
Y1 - 2011/2/1
N2 - Glioblastoma (GBM) is the most aggressive and destructive form of brain cancer. Animal models that can unravel the mechanisms underlying its progression are needed to develop rational and effective molecular therapeutic approaches. In this study, we report the development of mouse models for spontaneous gliomas representing distinct progressive stages of disease that are governed by defined genetic alterations. Neural stem/ progenitor cell (NPC)-specific constitutive Ras activation in vivo plus p53 deficiency led to development of primarily anaplastic astrocytoma (grade III), whereas combined loss of p53 plus p16Ink4a/p19Arf led to development of GBM (grade IV) at 100% penetrance within 6 weeks. These glioma models showed enhanced stem cell properties (stemness) accompanied by malignant progression. Notably, we determined that, in our models and in human specimens, downregulation of the homeodomain transcription factor NKX2.2, which is essential for oligodendroglial differentiation, was correlated with increased tumor malignancy. NKX2.2 overexpression by GBM-derived glioma-initiating cells (GIC) induced oligodendroglial differentiation and suppressed self-renewal capacity. By contrast, Nkx2.2 downregulation in mouse NPCs accelerated GBM formation. Importantly, the inhibitory effects of NXK2.2 on GIC self-renewal were conserved in human cells. Thus, our mouse models offer pathobiologically significant advantages to investigate the nature of brain tumors, with improved opportunities to develop novel mechanism-based therapeutic approaches.
AB - Glioblastoma (GBM) is the most aggressive and destructive form of brain cancer. Animal models that can unravel the mechanisms underlying its progression are needed to develop rational and effective molecular therapeutic approaches. In this study, we report the development of mouse models for spontaneous gliomas representing distinct progressive stages of disease that are governed by defined genetic alterations. Neural stem/ progenitor cell (NPC)-specific constitutive Ras activation in vivo plus p53 deficiency led to development of primarily anaplastic astrocytoma (grade III), whereas combined loss of p53 plus p16Ink4a/p19Arf led to development of GBM (grade IV) at 100% penetrance within 6 weeks. These glioma models showed enhanced stem cell properties (stemness) accompanied by malignant progression. Notably, we determined that, in our models and in human specimens, downregulation of the homeodomain transcription factor NKX2.2, which is essential for oligodendroglial differentiation, was correlated with increased tumor malignancy. NKX2.2 overexpression by GBM-derived glioma-initiating cells (GIC) induced oligodendroglial differentiation and suppressed self-renewal capacity. By contrast, Nkx2.2 downregulation in mouse NPCs accelerated GBM formation. Importantly, the inhibitory effects of NXK2.2 on GIC self-renewal were conserved in human cells. Thus, our mouse models offer pathobiologically significant advantages to investigate the nature of brain tumors, with improved opportunities to develop novel mechanism-based therapeutic approaches.
UR - http://www.scopus.com/inward/record.url?scp=79551572113&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551572113&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-10-2304
DO - 10.1158/0008-5472.CAN-10-2304
M3 - Article
C2 - 21169405
AN - SCOPUS:79551572113
SN - 0008-5472
VL - 71
SP - 1135
EP - 1145
JO - Cancer Research
JF - Cancer Research
IS - 3
ER -